239 research outputs found

    Tandem reactions in organic synthesis

    Get PDF
    Chapter One introduces the direct synthesis of 5-substituted naphthoquinones and provides extensive information about peri-metalation on naphthalene derivatives. We successfully developed the methodology for the preparation of 5-substituted naphthoquinones in a concise manner. Synthetically valuable 5-substituted naphthoquinones could be prepared in 4 steps from a commercially available starting material. This new synthetic method was applied to a biologically active perylene analog and could be explored to access other naphthoquinone-containing natural products.;Two and Three describe a new synthetic strategy to construct bridged complex molecules using Diels-Alder/Radical Cyclization (DARC). We successfully developed a new strategy to construct the bridged tricyclic systems via tandem Diels-Alder/radical cyclization process. During this tandem process, we observed the unusual preference for 6-endo-trig over 5-exo -trig in the radical cyclization step. In our effort to expand this strategy to other molecules, we found a concise preparation of alpha-methylene cyclohexenones, which would be useful to construct spirocyclic systems. This new strategy could be applied in the synthesis of the cumbiasin A skeleton and other biologically active natural products in a highly efficient manner

    Catalytic asymmetric synthesis of secondary nitriles via stereoconvergent Negishi arylations and alkenylations of racemic Ī±-bromonitriles

    Get PDF
    The first method for the stereoconvergent cross-coupling of racemic Ī±-halonitriles is described, specifically, nickel-catalyzed Negishi arylations and alkenylations that furnish an array of enantioenriched Ī±-arylnitriles and allylic nitriles, respectively. Noteworthy features of this investigation include: the highly enantioselective synthesis of Ī±-alkyl-Ī±-aryl nitriles that bear secondary Ī±-alkyl substituents; the first examples of the use of alkenylzinc reagents in stereoconvergent Negishi reactions of alkyl electrophiles; demonstration of the utility of a new family of ligands for asymmetric Negishi cross-couplings (a bidentate bis(oxazoline), rather than a tridentate pybox); in the case of arylzinc reagents, carbonā€“carbon bond formation at a remarkably low temperature (āˆ’78 Ā°C), the lowest reported to date for an enantioselective cross-coupling of an alkyl electrophile; a mechanistic dichotomy between Negishi reactions of an unactivated versus an activated secondary alkyl bromide

    Transition metalā€“catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry

    Get PDF
    BACKGROUND: The development of useful new methods for the construction of carbon-carbon bonds has had an impact on the many scientific disciplines (including materials science, biology, and chemistry) that use organic compounds. Tremendous progress has been made in the past several decades in the creation of bonds between sp^2-hybridized carbons (e.g., aryl-aryl bonds), particularly through the use of transition metal catalysis. In contrast, until recently, advances in the development of general methods that form bonds between sp^3-hybridized carbons (alkyl-alkyl bonds) had been rather limited. A variety of approaches, such as classical S_N^2 reactions and transition metal catalysis, typically led to side reactions rather than the desired carbon-carbon bond formation. With transition metal catalysis, the unwanted but often facile Ī²-hydride elimination of alkylmetal complexes presented a key impediment to efficient cross-coupling of alkyl electrophiles. In the case of many alkyl-alkyl bonds, there is an additional challenge beyond construction of the carbon-carbon bond itself: controlling the stereochemistry at one or both carbons of the new bond. It is important to control the stereochemistry of organic molecules because of its influence on properties such as biological activity. Each of these two challenges is difficult to solve individually; addressing them simultaneously is even more demanding. Until recently, the methods for achieving alkyl-alkyl bond formation were comparatively limited in scope, typically involving the use of unhindered (e.g., primary) electrophiles and unhindered, highly reactive nucleophiles (e.g., Grignard reagents, which have relatively poor functional group compatibility). With respect to enantioconvergent reactions, there were virtually no examples. ADVANCES: In recent years, it has been established that, through the action of an appropriate transition metal catalyst, it is possible to achieve a broad range of alkyl-alkyl bond-forming processes; nickel-based catalysts have proved to be especially effective. With respect to the electrophilic coupling partner, a wide range of secondary alkyl halides are now suitable. This has enabled the development of enantioconvergent reactions of readily available racemic secondary electrophiles. In view of the abundance of tertiary stereocenters in organic molecules, this is a noteworthy advance in synthesis. With respect to the nucleophilic partner, alkylboron and alkylzinc reagents (Suzuki- and Negishi-type reactions, respectively) can now be used in a wide variety of alkyl-alkyl couplings, which greatly increases the utility of such processes, as these nucleophiles are more readily available and have much improved functional group compatibility relative to Grignard reagents. These new methods for alkyl-alkyl bond formation have been applied to the synthesis of natural products and other bioactive compounds. OUTLOOK: A number of major challenges remain. For example, with regard to the electrophilic coupling partner, there is a need to develop general methods that are effective for tertiary alkyl halides, including enantioconvergent processes. With regard to the nucleophilic partner, there is a need to discover more versatile catalysts that can use a wide range of hindered (e.g., secondary and tertiary) alkylmetal reagents, as well as to achieve a broad spectrum of enantioconvergent couplings of racemic nucleophiles. These advances can enable the doubly stereoconvergent coupling of a racemic electrophile with a racemic nucleophile. The synthesis of alkyl-alkyl bonds is arguably the most important bond construction in organic synthesis. The ability to achieve this bond formation at will, as well as to control the product stereochemistry, would transform organic synthesis and empower the many scientists who use organic molecules. Recent work has provided evidence that transition metal catalysis can address this exciting challenge

    Learning Off-Road Terrain Traversability with Self-Supervisions Only

    Full text link
    Estimating the traversability of terrain should be reliable and accurate in diverse conditions for autonomous driving in off-road environments. However, learning-based approaches often yield unreliable results when confronted with unfamiliar contexts, and it is challenging to obtain manual annotations frequently for new circumstances. In this paper, we introduce a method for learning traversability from images that utilizes only self-supervision and no manual labels, enabling it to easily learn traversability in new circumstances. To this end, we first generate self-supervised traversability labels from past driving trajectories by labeling regions traversed by the vehicle as highly traversable. Using the self-supervised labels, we then train a neural network that identifies terrains that are safe to traverse from an image using a one-class classification algorithm. Additionally, we supplement the limitations of self-supervised labels by incorporating methods of self-supervised learning of visual representations. To conduct a comprehensive evaluation, we collect data in a variety of driving environments and perceptual conditions and show that our method produces reliable estimations in various environments. In addition, the experimental results validate that our method outperforms other self-supervised traversability estimation methods and achieves comparable performances with supervised learning methods trained on manually labeled data.Comment: Accepted to IEEE Robotics and Automation Letters. Our video can be found at https://bit.ly/3YdKan

    Large Language Models for Semantic Monitoring of Corporate Disclosures: A Case Study on Korea's Top 50 KOSPI Companies

    Full text link
    In the rapidly advancing domain of artificial intelligence, state-of-the-art language models such as OpenAI's GPT-3.5-turbo and GPT-4 offer unprecedented opportunities for automating complex tasks. This research paper delves into the capabilities of these models for semantically analyzing corporate disclosures in the Korean context, specifically for timely disclosure. The study focuses on the top 50 publicly traded companies listed on the Korean KOSPI, based on market capitalization, and scrutinizes their monthly disclosure summaries over a period of 17 months. Each summary was assigned a sentiment rating on a scale ranging from 1(very negative) to 5(very positive). To gauge the effectiveness of the language models, their sentiment ratings were compared with those generated by human experts. Our findings reveal a notable performance disparity between GPT-3.5-turbo and GPT-4, with the latter demonstrating significant accuracy in human evaluation tests. The Spearman correlation coefficient was registered at 0.61, while the simple concordance rate was recorded at 0.82. This research contributes valuable insights into the evaluative characteristics of GPT models, thereby laying the groundwork for future innovations in the field of automated semantic monitoring

    Experimental and statistical investigation of self-consolidating concrete mixture constituents for prestressed bridge girder fabrication

    Get PDF
    Self-consolidating concrete (SCC) has the potential to increase precast production and quality, especially for production of prestressed concrete (PSC) bridge girders due to its superior workability compared with conventional concrete (CC). To obtain desired fresh and hardened properties for the production of SCC PSC girders, many factors related to material characteristics and mixture proportioning must be considered. An experimental comparison of fresh and hardened properties of SCC mixtures made with different material constituents was conducted in this study. The ultimate objective of this paper is not only to provide an experimental program enabling the investigation of the effect of material constituents on the performance of SCC mixtures but also to gain more knowledge for improved production of SCC PSC girders. The experimental program was established based on technical findings from a literature review and additional input from a survey of several state departments of transportation (DOTs). The mixture constituents used to investigate SCC performance consisted of the type of cement and size and type of coarse aggregate. Testing methods included slump flow, visual stability index (VSI), J-ring, column segregation, and compressive strength. The testing results showed that the type, shape, and size of coarse aggregate have a dominant effect in terms of fresh properties and compressive strength; specifically, mixtures with river gravel had larger spreads than mixtures with crushed limestone. Cement type had the expected effect with mixtures using Type III cement developing higher early strength than those using Type I/II cement. A statistical analysis was performed to determine significant mixture parameters in terms of fresh and hardened properties. It was found that the fine aggregate content was the most significant parameter affecting both fresh and hardened properties\u27 behavior

    Introducing Murine Microbiome Database (MMDB): A Curated Database with Taxonomic Profiling of the Healthy Mouse Gastrointestinal Microbiome

    Get PDF
    The gut microbiota modulates overall metabolism, the immune system and brain development of the host. The majority of mammalian gut microbiota consists of bacteria. Among various model animals, the mouse has been most widely used in pre-clinical biological experiments. The significant compositional differences in taxonomic profiles among different mouse strains due to gastrointestinal locations, genotypes and vendors have been well documented. However, details of such variations are yet to be elucidated. This study compiled and analyzed 16S rRNA gene-based taxonomic profiles of 554 healthy mouse samples from 14 different projects to construct a comprehensive database of the microbiome of a healthy mouse gastrointestinal tract. The database, named Murine Microbiome Database, should provide researchers with useful taxonomic information and better biological insight about how each taxon, such as genus and species, is associated with locations in the gastrointestinal tract, genotypes and vendors. The database is freely accessible over the Internet.
    • ā€¦
    corecore