280 research outputs found

    Convergence Analysis of Mixed Timescale Cross-Layer Stochastic Optimization

    Full text link
    This paper considers a cross-layer optimization problem driven by multi-timescale stochastic exogenous processes in wireless communication networks. Due to the hierarchical information structure in a wireless network, a mixed timescale stochastic iterative algorithm is proposed to track the time-varying optimal solution of the cross-layer optimization problem, where the variables are partitioned into short-term controls updated in a faster timescale, and long-term controls updated in a slower timescale. We focus on establishing a convergence analysis framework for such multi-timescale algorithms, which is difficult due to the timescale separation of the algorithm and the time-varying nature of the exogenous processes. To cope with this challenge, we model the algorithm dynamics using stochastic differential equations (SDEs) and show that the study of the algorithm convergence is equivalent to the study of the stochastic stability of a virtual stochastic dynamic system (VSDS). Leveraging the techniques of Lyapunov stability, we derive a sufficient condition for the algorithm stability and a tracking error bound in terms of the parameters of the multi-timescale exogenous processes. Based on these results, an adaptive compensation algorithm is proposed to enhance the tracking performance. Finally, we illustrate the framework by an application example in wireless heterogeneous network

    Effect of Aspect Ratio on the Flow Structures Behind a Square Cylinder

    Get PDF
    In this thesis, the effect of aspect ratio on the flow past square cross-section wall-mounted cylinders is evaluated using computational fluid dynamics. The simulations are carried out using the Improved Delayed Detached Eddy (IDDES) turbulence model. Three cases with different heights of the cylinder (aspect ratio = cylinder height/width = 1, 2, and 4) were studied. The IDDES prediction of the flow statistics is validated against a set of wind tunnel experimental results from a recent report on the flow at a Reynolds number of 12,000 for a cylinder aspect ratio of four. It is common practise to analyse results in different horizontal and vertical planes in the wake of the bluff body. To this end, the traditional methods use a geometrical scaling factor such as the height/diameter of the cylinder or depth of flow. However, this can lead to an improper analysis as one may not capture the flow properties based on the physics of the flow. The flow characteristics can be influenced by both the proximity to the bed and to the cylinder’s free-end. In this thesis, a new method, based on the flow physics, is proposed to evaluate the role of aspect ratio using the forebody pressure distribution. Using the turbulence features and vortex identification methods, it is observed that the flow structure is influenced by the aspect ratio. The downwash flow noticed in the wake tends to become less dominant with increasing aspect ratio, accompanied by a near-bed upwash flow at the rear of the cylinder. The mean and instantaneous flow field characteristics at each aspect ratio has been examined and compared in different planes to elucidate their three-dimensional features. The far-wake of each flow field is visualized and examined using the three-dimensional iso-surface of the λ2 criterion

    Diffraction and Scattering Aware Radio Map and Environment Reconstruction using Geometry Model-Assisted Deep Learning

    Full text link
    Machine learning (ML) facilitates rapid channel modeling for 5G and beyond wireless communication systems. Many existing ML techniques utilize a city map to construct the radio map; however, an updated city map may not always be available. This paper proposes to employ the received signal strength (RSS) data to jointly construct the radio map and the virtual environment by exploiting the geometry structure of the environment. In contrast to many existing ML approaches that lack of an environment model, we develop a virtual obstacle model and characterize the geometry relation between the propagation paths and the virtual obstacles. A multi-screen knife-edge model is adopted to extract the key diffraction features, and these features are fed into a neural network (NN) for diffraction representation. To describe the scattering, as oppose to most existing methods that directly input an entire city map, our model focuses on the geometry structure from the local area surrounding the TX-RX pair and the spatial invariance of such local geometry structure is exploited. Numerical experiments demonstrate that, in addition to reconstructing a 3D virtual environment, the proposed model outperforms the state-of-the-art methods in radio map construction with 10%-18% accuracy improvements. It can also reduce 20% data and 50% training epochs when transferred to a new environment.Comment: 13 page

    A Fully Convolutional Tri-branch Network (FCTN) for Domain Adaptation

    Full text link
    A domain adaptation method for urban scene segmentation is proposed in this work. We develop a fully convolutional tri-branch network, where two branches assign pseudo labels to images in the unlabeled target domain while the third branch is trained with supervision based on images in the pseudo-labeled target domain. The re-labeling and re-training processes alternate. With this design, the tri-branch network learns target-specific discriminative representations progressively and, as a result, the cross-domain capability of the segmenter improves. We evaluate the proposed network on large-scale domain adaptation experiments using both synthetic (GTA) and real (Cityscapes) images. It is shown that our solution achieves the state-of-the-art performance and it outperforms previous methods by a significant margin.Comment: Accepted by ICASSP 201

    Distributive Network Utility Maximization (NUM) over Time-Varying Fading Channels

    Full text link
    Distributed network utility maximization (NUM) has received an increasing intensity of interest over the past few years. Distributed solutions (e.g., the primal-dual gradient method) have been intensively investigated under fading channels. As such distributed solutions involve iterative updating and explicit message passing, it is unrealistic to assume that the wireless channel remains unchanged during the iterations. Unfortunately, the behavior of those distributed solutions under time-varying channels is in general unknown. In this paper, we shall investigate the convergence behavior and tracking errors of the iterative primal-dual scaled gradient algorithm (PDSGA) with dynamic scaling matrices (DSC) for solving distributive NUM problems under time-varying fading channels. We shall also study a specific application example, namely the multi-commodity flow control and multi-carrier power allocation problem in multi-hop ad hoc networks. Our analysis shows that the PDSGA converges to a limit region rather than a single point under the finite state Markov chain (FSMC) fading channels. We also show that the order of growth of the tracking errors is given by O(T/N), where T and N are the update interval and the average sojourn time of the FSMC, respectively. Based on this analysis, we derive a low complexity distributive adaptation algorithm for determining the adaptive scaling matrices, which can be implemented distributively at each transmitter. The numerical results show the superior performance of the proposed dynamic scaling matrix algorithm over several baseline schemes, such as the regular primal-dual gradient algorithm

    Integrated Interpolation and Block-term Tensor Decomposition for Spectrum Map Construction

    Full text link
    This paper addresses the challenge of reconstructing a 3D power spectrum map from sparse, scattered, and incomplete spectrum measurements. It proposes an integrated approach combining interpolation and block-term tensor decomposition (BTD). This approach leverages an interpolation model with the BTD structure to exploit the spatial correlation of power spectrum maps. Additionally, nuclear norm regularization is incorporated to effectively capture the low-rank characteristics. To implement this approach, a novel algorithm that combines alternating regression with singular value thresholding is developed. Analytical justification for the enhancement provided by the BTD structure in interpolating power spectrum maps is provided, yielding several important theoretical insights. The analysis explores the impact of the spectrum on the error in the proposed method and compares it to conventional local polynomial interpolation. Extensive numerical results demonstrate that the proposed method outperforms state-of-the-art methods in terms of signal source separation and power spectrum map construction, and remains stable under off-grid measurements and inhomogeneous measurement topologies
    • …
    corecore