74 research outputs found

    ViP3D: End-to-end Visual Trajectory Prediction via 3D Agent Queries

    Full text link
    Existing autonomous driving pipelines separate the perception module from the prediction module. The two modules communicate via hand-picked features such as agent boxes and trajectories as interfaces. Due to this separation, the prediction module only receives partial information from the perception module. Even worse, errors from the perception modules can propagate and accumulate, adversely affecting the prediction results. In this work, we propose ViP3D, a visual trajectory prediction pipeline that leverages the rich information from raw videos to predict future trajectories of agents in a scene. ViP3D employs sparse agent queries throughout the pipeline, making it fully differentiable and interpretable. Furthermore, we propose an evaluation metric for this novel end-to-end visual trajectory prediction task. Extensive experimental results on the nuScenes dataset show the strong performance of ViP3D over traditional pipelines and previous end-to-end models.Comment: Project page is at https://tsinghua-mars-lab.github.io/ViP3

    Translocation of PKCθ in T cells is mediated by a nonconventional, PI3-K– and Vav-dependent pathway, but does not absolutely require phospholipase C

    Get PDF
    PKCθ plays an essential role in activation of mature T cells via stimulation of AP-1 and NF-κB, and is known to selectively translocate to the immunological synapse in antigen-stimulated T cells. Recently, we reported that a Vav/Rac pathway which depends on actin cytoskeleton reorganization mediates selective recruitment of PKCθ to the membrane or cytoskeleton and its catalytic activation by anti-CD3/CD28 costimulation. Because this pathway acted selectively on PKCθ, we addressed here the question of whether the translocation and activation of PKCθ in T cells is regulated by a unique pathway distinct from the conventional mechanism for PKC activation, i.e., PLC-mediated production of DAG. Using three independent approaches, i.e., a selective PLC inhibitor, a PLCγ1-deficient T cell line, or a dominant negative PLCγ1 mutant, we demonstrate that CD3/CD28-induced membrane recruitment and COOH-terminal phosphorylation of PKCθ are largely independent of PLC. In contrast, the same inhibitory strategies blocked the membrane translocation of PKCα. Membrane or lipid raft recruitment of PKCθ (but not PKCα) was absent in T cells treated with phosphatidylinositol 3-kinase (PI3-K) inhibitors or in Vav-deficient T cells, and was enhanced by constitutively active PI3-K. 3-phosphoinositide-dependent kinase-1 (PDK1) also upregulated the membrane translocation of PKCθ, but did not associate with it. These results provide evidence that a nonconventional PI3-K– and Vav-dependent pathway mediates the selective membrane recruitment and, possibly, activation of PKCθ in T cells

    Hydrogen injection reduces ammonia nitrogen and changes microbial community composition in aquaculture water

    Get PDF
    The study aimed to investigate the effect of hydrogen on nitrogen and phosphorus removal and microbial community composition in aquaculture water. Two groups were designed separated: Group H was charged with hydrogen and Group D was set as control. Water samples were collected at 0, 1, 2, 3, 4, 5, 6, and 7 days after hydrogen injection to detect not only the content of total nitrogen, ammonia nitrogen and phosphorus, but also microbial community composition in aquaculture water. Our findings have demonstrated that 7-days’ hydrogen treatment could effectively reduce ammonia nitrogen in aquaculture water. And in Day 7, the concentration of ammonia nitrogen in Group D was 1.66 times as that in Group H. Meanwhile, microbial structures in the water bodies of these two groups were significantly different. The abundance of bacteria such as Proteobacteria, Firmicutes, Bacteroidetes, and Desulphuria increased clearly in Group H, which means nitrification and denitrification occurred in the effect of hydrogen injection. These findings suggested that hydrogen could significantly improve aquaculture water health and reduce the production of ammonia nitrogen, which means hydrogen could be used as a functional external method to protect the aquaculture environment

    Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane

    Get PDF
    Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa and HEK293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system

    Complete mitochondrial genome of a tropical sea cucumber, Stichopus chloronotus

    No full text
    In this study, we report the complete mitochondrial genome of Stichopus chloronotus. The mitogenome was 16,247 base pairs (58.55% A + T content) in length, comprising a total of 37 genes, including 13 protein-coding genes, 22 transfer RNA genes and 2 ribosomal RNA genes. To resolve the phylogenetic position of S. chloronotus, we analyzed all mitochondrial protein-coding genes from 27 species within the Echinodermata. The results showed that S. chloronotus belonged to the family Stichopodidae and was more closely related to tropical Stichopus species (S. horrens and S. monotuberculatus) than to other species. Our results will be useful for evolutionary analysis of sea cucumber species

    Design of sensor system for air pollution monitoring

    No full text
    In this work, we present the design of sensor platform for air pollution monitoring. During the design process, we took into account a lot of problems such as system architecture, power consumption and linearity consideration. ADC plays a vital important role in high-linearity sensor micro system, several practical techniques which can improve the performance and decrease power consumption of ADC are discussed in this paper
    • …
    corecore