5 research outputs found

    Eletroestimulador funcional de oito canais com malha de realimentação utilizando Controlador Digital

    No full text
    Foi desenvolvido um Eletroestimulador Funcional Microcontrolado para geração de movimentos nos membros inferiores de paraplégicos, visando acelerar o processo de reabilitação. O estimulador neuromuscular é constituído por oito canais microcontrolados, com formas de onda de corrente bifásica, retangular e carga balanceada, com capacidade para fornecer correntes com amplitude de até 140 mA, utilizando modulação por largura de pulso (PWM). Foi implementado um controlador Proporcional Integral Derivativo (PID) embarcado para uso com o eletroestimulador, sendo possível determinar a energia a ser aplicada ao membro estimulado, de forma a mantê-lo em uma posição pré-estabelecida. O projeto desse controlador se baseou em um modelo matemático linear de segunda ordem, que representa o comportamento da força muscular devido a um estímulo elétrico. Para validação e teste do funcionamento do sistema, funções matemáticas que descrevem o comportamento fisiológico do membro inferior foram representadas por circuitos eletrônicos. Desta forma, neste projeto foi possível integrar o controlador, o estimulador e o modelo fisiológico do músculo, observando-se a resposta temporal durante a eletroestimulação, descartando, inicialmente, a realização de testes com pessoas, visando preservar a integridade física dos voluntários. Após a verificação do bom funcionamento do equipamento, realizou-se testes com voluntários aplicando o controle em malha fechadaA Microcontrolled Functional Electrical Stimulation (FES) system was developed for generating movements in the lower limbs of paraplegics in order to accelerate their rehabilitation process. The neuromuscular stimulator consists of eight channels, microcontrolled, rectangular, biphasic current waveform, balanced load, with the ability to deliver current with amplitude of 140 mA using pulse width modulation (PWM). A PID controller was implemented for using with the microcontrolled stimulator, and the energy to be applied to the stimulated member can be determined in order to keep the leg in a pre-determined position. The design of this controller was based on a linear second order mathematical model, which describes the behavior of a muscle strength due to an electrical stimulus. For validation and testing the microcontrolled electrical stimulator system, mathematical functions that represent the physiological behavior of the lower limbs were represented by electronic circuits. Thus, this project integrates the controller, the stimulator and the muscle model, observing the time response during electrical stimulation, avoiding testing it with patients and preserving the physical integrity of the volunteers. After verifying the proper operation of the equipment, tests with volunteers were carried out applying closed loop contro

    Digital controller design considering hardware constraints: application in a paraplegic patient

    No full text
    INTRODUCTION: A methodology was developed for implementing closed-loop control algorithms and for evaluating the behavior of a system, considering certain component restrictions used in laboratory implementation. METHODS: Mathematical functions representing a model of the biological system were used for knee extension/flexion movements. A Proportional Integral Derivative (PID) controller and another one using the root locus method were designed to control a patient’s leg position by applying functional electrical stimulation (FES). The controllers were simulated in Matlab and ISIS Proteus. After the simulations were performed, the codes were embedded in a microcontroller, and tests were conducted on a paraplegic volunteer. To the best of the authors’ knowledge, this is the first time that ISIS Proteus software resources have been used prior to implementing a closed-loop system designed to control the leg position of patients. RESULTS:This method obviates the application of initial controller tests directly to patients. The response obtained in the experiment with a paraplegic patient complied with the specifications set in terms of the steady-state error, the settling time, and the percentage overshoot. The proposed procedure was successfully applied for the implementation of a controller used to control the leg position of a paraplegic person by electrical muscle stimulation. CONCLUSION:The methodology presented in this manuscript can contribute to the implementation of analog and digital controllers because hardware limitations are typically not taken into account in the design of controllers.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Núcleos de Ensino da Unesp: artigos 2013: volume 2: metodologias de ensino e a apropriação de conhecimento pelos alunos

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Núcleos de Ensino da Unesp: artigos 2013: volume 2: metodologias de ensino e a apropriação de conhecimento pelos alunos

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Núcleos de Ensino da Unesp: artigos 2009

    No full text
    corecore