89 research outputs found

    Alteraciones neuropsicológicas en el alcoholismo crónico

    Get PDF
    El déficit neuropsicológico asociado al alcholismo abarca diversas funciones: memoria, razonamiento abstracto, solución de problemas y ha- bilidades perceptivo-motoras. Estructuralmente, los cambios cerebrales ob- servados con m i s frecuencia en la Tomografia Computarizada (TC) son la atrofia cerebral difusa y la dilatación ventricular. La dilatación ventri- cular es la medida de atrofia cerebral que m i s correlaciona con el déficit neuropsicológico. Desde ei punto de vista funcional, el flujo sanguineo ce- rebral repional muestra una reducción. esencialmente en los alcohólicos de más eda;. El deterioro cerebral y de funciones cognitivas esta' en relacion con varios factores: toxicidad directa del alcohol, déficit de tiamina, y dis- funciones hepáticas. Existe además una interacción entre la edad y las al- teraciones citadas. Añadir por ultimo que tanto los signos de atrofia en la TC, como la reducción de flujo sanguineo y los trastornos neuropsico- lógicos son parcialmente reversibles con la abstinencia. Palabras clave: Alcoholisme, neuropsicologia, tomografia compu- tarizada, flujo sanguineo cerebral

    Perfil de memoria en el trastorno por déficit de atención con hiperactividad.

    Get PDF
    The objective of this study is to contribute to the establishment of a memory profile in subjects with attention deficit disorder with hyperactivity (ADHD). We examined fifty-one adolescents: 16 ADHD and 35 controls, aged between 14 and 16. Neuropsychological exploration included tests of short-term memory and of declarative and implicit (incidental and procedural) memory. Subjects with ADHD presented deficits in their mnesic abilities. These deficits do not involve all type of memory, but are selective. Declarative memory and, especially, short-term memory show higher deficits than implicit or non-declarative memory: incidental learning is preserved and procedural learning is similar to that obtained by control subjects, although this forn of learning presents more diflculties for ADHD subjects learning with a higher difficulty

    Resting-state functional brain netwoks in Parkinson's disease

    Get PDF
    The network approach is increasingly being applied to the investigation of normal brain function and its impairment. In the present review, we introduce the main methodological approaches employed for the analysis of resting-state neuroimaging data in Parkinson's disease studies. We then summarize the results of recent studies that used a functional network perspective to evaluate the changes underlying different manifestations of Parkinson's disease, with an emphasis on its cognitive symptoms. Despite the variability reported by many studies, these methods show promise as tools for shedding light on the pathophysiological substrates of different aspects of Parkinson's disease, as well as for differential diagnosis, treatment monitoring and establishment of imaging biomarkers for more severe clinical outcomes

    Structural and functional magnetic resonance imaging in isolated REM sleep behavior disorder: A systematic review of studies using neuroimaging software.

    Get PDF
    Isolated rapid eye movement sleep behavior disorder (iRBD) is a harbinger for developing clinical synucleinopathies. Magnetic resonance imaging (MRI) has been suggested as a tool for understanding the brain bases of iRBD and its evolution. This review systematically analyzed original full text articles on structural and functional MRI in patients with video-polysomnography-confirmed iRBD according to systematic procedures suggested by Reviews and Meta-analyses (PRISMA). The literature search was conducted via the PubMed database for articles related to structural and functional MRI in iRBD from 2000 to 2020. Investigations to date have been diverse in terms of methodology, but most agree that patients with iRBD have structural changes in deep gray matter nuclei, cortical gray matter atrophy, and disrupted functional connectivity within the basal ganglia, the cortico-striatal and cortico-cortical networks. Furthermore, there is evidence that MRI detects structural and functional brain changes associated with the motor and non-motor symptoms of iRBD. The current review highlights the need for larger multicenter and longitudinal studies, using complex approaches based on data-driven and unsupervised machine learning that will help to identify structural and functional patterns of brain degeneration. In turn, this may even allow for the prediction of subsequent phenoconversion from iRBD to the clinically defined synucleinopathie

    Reorganization of brain networks in aging: a review of functional connectivity studies

    Get PDF
    Healthy aging (HA) is associated with certain declines in cognitive functions, even in individuals that are free of any process of degenerative illness. Functional magnetic resonance imaging (fMRI) has been widely used in order to link this age-related cognitive decline with patterns of altered brain function. A consistent finding in the fMRI literature is that healthy old adults present higher activity levels in some brain regions during the performance of cognitive tasks. This finding is usually interpreted as a compensatory mechanism. More recent approaches have focused on the study of functional connectivity, mainly derived from resting state fMRI, and have concluded that the higher levels of activity coexist with disrupted connectivity. In this review, we aim to provide a state-of-the-art description of the usefulness and the interpretations of functional brain connectivity in the context of HA. We first give a background that includes some basic aspects and methodological issues regarding functional connectivity. We summarize the main findings and the cognitive models that have been derived from task-activity studies, and we then review the findings provided by resting-state functional connectivity in HA. Finally, we suggest some future directions in this field of research. A common finding of the studies included is that older subjects present reduced functional connectivity compared to young adults. This reduced connectivity affects the main brain networks and explains age-related cognitive alterations. Remarkably, the default mode network appears as a highly compromised system in HA. Overall, the scenario given by both activity and connectivity studies also suggests that the trajectory of changes during task may differ from those observed during resting-state. We propose that the use of complex modeling approaches studying effective connectivity may help to understand context-dependent functional reorganizations in the aging process

    Brain connectivity dynamics in cisgender and transmen people with gender incongruence before gender affirmative hormone treatment

    Get PDF
    Large-scale brain network interactions have been described between trans- and cis-gender binary identities. However, a temporal perspective of the brain's spontaneous fuctuations is missing. We investigated the functional connectivity dynamics in transmen with gender incongruence and its relationship with interoceptive awareness. We describe four states in native and meta-state spaces: (i) one state highly prevalent with sparse overall connections; (ii) a second with strong couplings mainly involving components of the salience, default, and executive control networks. Two states with global sparse connectivity but positive couplings (iii) within the sensorimotor network, and (iv) between salience network regions. Transmen had more dynamical fuidity than cismen, while cismen presented less meta-state fuidity and range dynamism than transmen and ciswomen. A positive association between attention regulation and fuidity and meta-state range dynamism was found in transmen. There exist gender diferences in the temporal brain dynamism, characterized by distinct interrelations of the salience network as catalyst interacting with other networks. We ofer a functional explanation from the neurodevelopmental cortical hypothesis of a gendered-self

    Visuospatial and visuoperceptual impairment in relation to global atrophy in Parkinson's diseas

    Get PDF
    Parkinson's disease (PD) patients differed from controls of similar age in visuospatial and visuoperceptual functions at diagnosis moment, and these deficits have been shown to be neuropsychological markers of evolution to dementia. The aim of this study was to relate these dysfunctions with measures of brain. The sample of this study consisted of 92 PD patients and 36 healthy subjects matched by age, sex and education. All subjects were evaluated with Judgment of Line Orientation, Visual Form Discrimination and Facial Recognition Tests and magnetic resonance imaging at 3 Tesla. We found significant differences between patients and controls in all three tests and in the mean of cortical thickness, gray matter volume and ventricular system. All visuospatial and visuoperceptual tests correlated with the measures of global atrophy suggesting that they are reflecting the brain degeneration associated to PD

    Brain network interactions in transgender individuals with gender incongruence

    Get PDF
    Functional brain organization in transgender persons remains unclear. Our aims were to investigate global and regional connectivity differences within functional networks in transwomen and transmen with early-in-life onset gender incongruence; and to test the consistency of two available hypotheses that attempted to explain gender variants: (i) a neurodevelopmental cortical hypothesis that suggests the existence of different brain phenotypes based on structural MRI data and genes polymorphisms of sex hormone receptors; (ii) a functional-based hypothesis in relation to regions involved in the own body perception. T2*-weighted images in a 3-T MRI were obtained from 29 transmen and 17 transwomen as well as 22 cisgender women and 19 cisgender men. Restingstate independent component analysis, seed-to-seed functional network and graph theory analyses were performed. Transmen, transwomen, and cisgender women had decreased connectivity compared with cisgender men in superior parietal regions, as part of the salience (SN) and the executive control (ECN) networks. Transmen also had weaker connectivity compared with cisgender men between intra-SN regions and weaker inter-network connectivity between regions of the SN, the default mode network (DMN), the ECN and the sensorimotor network. Transwomen had lower small-worldness, modularity and clustering coefficient than cisgender men. There were no differences among transmen, transwomen, and ciswomen. Together these results underline the importance of the SN interacting with DMN, ECN, and sensorimotor networks in transmen, involving regions of the entire brain with a frontal predominance. Reduced global connectivity graph-theoretical measures were a characteristic of transwomen. It is proposed that the interaction between networks is a keystone in building a gendered self. Finally, our findings suggest that both proposed hypotheses are complementary in explaining brain differences between gender variants

    Data for functional MRI connectivity in transgender people with gender incongruence and cisgender individuals

    Get PDF
    We provide T2*-weighted and T1-weighted images acquired on a 3T MRI scanner obtained from 17 transwomen and 29 transmen with gender incongruence; and 22 ciswomen and 19 cismen that identified themselves to the sex assigned at birth. Data from three different techniques that describe global and regional connectivity differences within functional resting-state networks in transwomen and transmen with early-in-life onset gender incongruence are provided: (1) we obtained spatial maps from data-driven independent component analysis using the melodic tool from FSL software; (2) we provide the functional networks interactions of two functional atlases' seeds from a seed-to-seed approach; (3) and global graph-theoretical metrics such as the smallworld organization, and the segregation and integration properties of the networks. Interpretations of the present dataset can be found in the original article, doi:10.1016/j.neuroimage.2020.116613[1]. The original and processed nifti images are available in Mendeley datasets. In addition, correlation matrices for the seed-to-seed and graph-theory analyses as well as the graph-theoretical measures were made available in Matlab files. Finally, we present supplementary information for the original article

    Neuroanatomical and functional correlates of cognitive and affective empathy in young healthy adults

    Get PDF
    Neural substrates of empathy are mainly investigated through task-related functional MRI. However, the functional neural mechanisms at rest underlying the empathic response have been poorly studied. We aimed to investigate neuroanatomical and functional substrates of cognitive and affective empathy. The self-reported empathy questionnaire Cognitive and Affective Empathy Test (TECA), T1 and T2∗-weighted 3-Tesla MRI were obtained from 22 healthy young females (mean age: 19.6 ± 2.4) and 20 males (mean age: 22.5 ± 4.4). Groups of low and high empathy were established for each scale. FreeSurfer v6.0 was used to estimate cortical thickness and to automatically segment the subcortical structures. FSL v5.0.10 was used to compare resting-state connectivity differences between empathy groups in six defined regions: the orbitofrontal, cingulate, and insular cortices, and the amygdala, hippocampus, and thalamus using a non-parametric permutation approach. The high empathy group in the Perspective Taking subscale (cognitive empathy) had greater thickness in the left orbitofrontal and ventrolateral frontal cortices, bilateral anterior cingulate, superior frontal, and occipital regions. Within the affective empathy scales, subjects with high Empathic Distress had higher thalamic volumes than the low-empathy group. Regarding resting-state connectivity analyses, low-empathy individuals in the Empathic Happiness scale had increased connectivity between the orbitofrontal cortex and the anterior cingulate when compared with the high-empathy group. In conclusion, from a structural point of view, there is a clear dissociation between the brain correlates of affective and cognitive factors of empathy. Neocortical correlates were found for the cognitive empathy dimension, whereas affective empathy is related to lower volumes in subcortical structures. Functionally, affective empathy is linked to connectivity between the orbital and cingulate cortices
    corecore