275 research outputs found

    Visual Tracking Using Max-Average Pooling and Weight-Selection Strategy

    Get PDF
    Many modern visual tracking algorithms incorporate spatial pooling, max pooling, or average pooling, which is to achieve invariance to feature transformations and better robustness to occlusion, illumination change, and position variation. In this paper, max-average pooling method and Weight-selection strategy are proposed with a hybrid framework, which is combined with sparse representation and particle filter, to exploit the spatial information of an object and make good compromises to ensure the correctness of the results in this framework. Challenges can be well considered by the proposed algorithm. Experimental results demonstrate the effectiveness and robustness of the proposed algorithm compared with the state-of-the-art methods on challenging sequences

    CCPL: Contrastive Coherence Preserving Loss for Versatile Style Transfer

    Full text link
    In this paper, we aim to devise a universally versatile style transfer method capable of performing artistic, photo-realistic, and video style transfer jointly, without seeing videos during training. Previous single-frame methods assume a strong constraint on the whole image to maintain temporal consistency, which could be violated in many cases. Instead, we make a mild and reasonable assumption that global inconsistency is dominated by local inconsistencies and devise a generic Contrastive Coherence Preserving Loss (CCPL) applied to local patches. CCPL can preserve the coherence of the content source during style transfer without degrading stylization. Moreover, it owns a neighbor-regulating mechanism, resulting in a vast reduction of local distortions and considerable visual quality improvement. Aside from its superior performance on versatile style transfer, it can be easily extended to other tasks, such as image-to-image translation. Besides, to better fuse content and style features, we propose Simple Covariance Transformation (SCT) to effectively align second-order statistics of the content feature with the style feature. Experiments demonstrate the effectiveness of the resulting model for versatile style transfer, when armed with CCPL.Comment: Accepted by ECCV2022 as an oral paper; code url: https://github.com/JarrentWu1031/CCPL Video demo: https://youtu.be/scZuJCXhL1

    Look globally, age locally: Face aging with an attention mechanism

    Full text link
    Face aging is of great importance for cross-age recognition and entertainment-related applications. Recently, conditional generative adversarial networks (cGANs) have achieved impressive results for face aging. Existing cGANs-based methods usually require a pixel-wise loss to keep the identity and background consistent. However, minimizing the pixel-wise loss between the input and synthesized images likely resulting in a ghosted or blurry face. To address this deficiency, this paper introduces an Attention Conditional GANs (AcGANs) approach for face aging, which utilizes attention mechanism to only alert the regions relevant to face aging. In doing so, the synthesized face can well preserve the background information and personal identity without using the pixel-wise loss, and the ghost artifacts and blurriness can be significantly reduced. Based on the benchmarked dataset Morph, both qualitative and quantitative experiment results demonstrate superior performance over existing algorithms in terms of image quality, personal identity, and age accuracy.Comment: arXiv admin note: text overlap with arXiv:1807.09251 by other author

    From Node Interaction to Hop Interaction: New Effective and Scalable Graph Learning Paradigm

    Full text link
    Existing Graph Neural Networks (GNNs) follow the message-passing mechanism that conducts information interaction among nodes iteratively. While considerable progress has been made, such node interaction paradigms still have the following limitation. First, the scalability limitation precludes the wide application of GNNs in large-scale industrial settings since the node interaction among rapidly expanding neighbors incurs high computation and memory costs. Second, the over-smoothing problem restricts the discrimination ability of nodes, i.e., node representations of different classes will converge to indistinguishable after repeated node interactions. In this work, we propose a novel hop interaction paradigm to address these limitations simultaneously. The core idea of hop interaction is to convert the target of message-passing from nodes into multi-hop features inside each node. Specifically, it first pre-computed multi-hop features of nodes to reduce computation costs during training and inference. Then, it conducts a non-linear interaction among multi-hop features to enhance the discrimination of nodes. We design a simple yet effective HopGNN framework that can easily utilize existing GNNs to achieve hop interaction. Furthermore, we propose a multi-task learning strategy with a self-supervised learning objective to enhance HopGNN. We conduct extensive experiments on 12 benchmark datasets in a wide range of domains, scales, and smoothness of graphs. Experimental results show that our methods achieve superior performance while maintaining high scalability and efficiency

    Mice Exposed to Chronic Intermittent Hypoxia Simulate Clinical Features of Deficiency of both Qi and Yin Syndrome in Traditional Chinese Medicine

    Get PDF
    Deficiency of both Qi and Yin Syndrome (DQYS) is one of the common syndromes in traditional Chinese medicine (TCM), mainly characterized by tiredness, emaciation, anorexia, fidget, palpitation and rapid pulse, and so forth. Currently, there is no available animal model which can reflect the clinical features of this syndrome. In the present paper, we observed the time-course changes of whole behavior, body weight, food intake, locomotive activity and electrocardiogram in mice exposed to chronic intermittent hypoxia for 6 weeks, and measured bleeding time at last according to the clinical features of DQYS and one key pathological factor. The results showed that the mice exposed to intermittent hypoxia for certain time presented lackluster hair, dull looking hair, resistance, attacking, body weight loss, food intake decline, locomotive activity decrease, heart rate quickening and T wave elevating, which were similar to the major clinical features of DQYS. Meanwhile, bleeding time shortening was also found, which was consistent with the clinical fact that DQYS often accompanied with blood stasis. The possible explanation was also outlined according to the available literature. Such findings suggested chronic intermittent hypoxia could induce similar symptoms and signs in mice accorded with the clinical features of DQYS, which provided a suitable animal model for evaluation of drugs for the treatment of this syndrome and further exploration of pathological process or correlation of the syndrome and related diseases

    Binaural Rendering of Ambisonic Signals by Neural Networks

    Full text link
    Binaural rendering of ambisonic signals is of broad interest to virtual reality and immersive media. Conventional methods often require manually measured Head-Related Transfer Functions (HRTFs). To address this issue, we collect a paired ambisonic-binaural dataset and propose a deep learning framework in an end-to-end manner. Experimental results show that neural networks outperform the conventional method in objective metrics and achieve comparable subjective metrics. To validate the proposed framework, we experimentally explore different settings of the input features, model structures, output features, and loss functions. Our proposed system achieves an SDR of 7.32 and MOSs of 3.83, 3.58, 3.87, 3.58 in quality, timbre, localization, and immersion dimensions
    corecore