99 research outputs found

    Two-Dimensional Band Dispersion of Ultra-Flat Hexagonal Bismuthene Grown on Ag(111) Bulk and Quantum-Well Films

    Full text link
    Two-dimensional band dispersion of (2×\times2) superstructure with Bi grown on Ag(111), which has been urged as an ultraflat hexagonal bismuthene, is investigated using angle-resolved photoemission spectroscopy (ARPES). The (2×\times2)-Bi superstructure can be grown on the Ag(111) surface at low temperatures; it transforms into a surface alloy with a (3×3\sqrt{3}\times\sqrt{3}) superstructure at 300 K. ARPES measurements reveal the consistency with the band structure of ultraflat bismuthene in previous reports. The band structure of (2×\times2)-Bi surface remains unchanged with decreasing Ag layer thickness, indicating the limited penetration of Bi p-orbitals into the Ag layer.Comment: 6 pages, 4 figure

    The Impact of Reduced Skeletal Muscle Mass on Patients with Knee Osteoarthritis

    Get PDF
    Although several studies have suggested a possible association between sarcopenia and knee osteoarthritis (OA) in the elderly, there remains no definitive evidence. Recently, however, the serum creatinine/cystatin C ratio (sarcopenia index: SI) was reported to correlate with skeletal muscle mass. The present retrospective study therefore investigated the impact of reduced skeletal muscle mass on advanced knee OA using SI. In 55 individuals scheduled for knee osteotomy or knee arthroplasty, correlations between SI and patient-reported outcomes such as the Knee Society Score (KSS), Knee Injury and Osteoarthritis Outcome Score (KOOS), and Oxford Knee Score (OKS) were explored. Significant associations were found between SI and the KSS functional activity score (β=0.37; p=0.022), KOOS subscale for activities of daily living (β=0.42; p=0.0096), and OKS (β=0.42; p=0.0095). This study underscores the role of reduced muscle mass in functional outcomes and introduces SI as a valuable marker for assessing muscle loss in knee OA patients

    Demolition of Reinforced Concrete by Steam Pressure Cracking System

    Get PDF
    The authors developed an environment-friendly demolition mechanical system for a large reinforced concrete structure for an actual site. The steam pressure cracking agent (SPC, non-explosive) is a method that can safely and quickly separate concrete because it produces lesser vibration and sound than the blasting method, which uses explosives. The authors showed that the direction of cracking can be controlled by an induction hole. The principle of control is that the elastic wave of the compression stress generated from the SPC reaction changes to a tensile elastic wave at the induction hole, which initiates a crack. Furthermore, in the SPC method, a large amount of concrete powder generated by the explosion method was not produced, and there was no risk of secondary contamination by fine concrete powder. The area over which the crack propagated depends on the energy generated from the SPC. The relationship between the two is linear. For reinforced concrete, the energy of the SPC is used for both the destructive energy of the concrete and the energy of the cutting of the reinforcing steel bar, which quickly breaks with low energy. By applying an SPC to dismantle large reinforced concrete structures, controlled cracking can be achieved safely and quickly without any environmental pollution. A fracturing method using a SPC is an effective method for the decommissioning of nuclear power plants and the dismantling of concrete structures. In this report, we report a remote drilling system that can be used to remotely install loading holes and guiding holes for the SPC and perform effective controlled fracturing

    Elastic Wave Property of Concrete Decomposed by Steam Pressure Cracking Agent

    Get PDF
    A steam pressure cracking (SPC) agent is a method that can dismantle concrete safely and quickly. In previous studies, the authors showed that the direction of the crack could be controlled by the tensile stress at the induction holes and not by the compressive stress at the SPC hole. We demonstrate that the compression elastic wave changes to a tensile wave when the wave is reflected at the free surface of the induction hole. We also examined the properties of the concrete by developing an elastic wave measuring system that is difficult to break down even in high-temperature, wet, and radiation environment. The elastic wave velocity change in the four concrete types was less than 4%. It was found that the standard deviation value, σ, changed four times. Therefore, it is possible to determine the deterioration of the internal structure of concrete using the standard deviation value σ, which indicates the dispersion of the elastic wave velocity
    • …
    corecore