15 research outputs found

    Enrollment-stage Backdoor Attacks on Speaker Recognition Systems via Adversarial Ultrasound

    Full text link
    Automatic Speaker Recognition Systems (SRSs) have been widely used in voice applications for personal identification and access control. A typical SRS consists of three stages, i.e., training, enrollment, and recognition. Previous work has revealed that SRSs can be bypassed by backdoor attacks at the training stage or by adversarial example attacks at the recognition stage. In this paper, we propose TUNER, a new type of backdoor attack against the enrollment stage of SRS via adversarial ultrasound modulation, which is inaudible, synchronization-free, content-independent, and black-box. Our key idea is to first inject the backdoor into the SRS with modulated ultrasound when a legitimate user initiates the enrollment, and afterward, the polluted SRS will grant access to both the legitimate user and the adversary with high confidence. Our attack faces a major challenge of unpredictable user articulation at the enrollment stage. To overcome this challenge, we generate the ultrasonic backdoor by augmenting the optimization process with random speech content, vocalizing time, and volume of the user. Furthermore, to achieve real-world robustness, we improve the ultrasonic signal over traditional methods using sparse frequency points, pre-compensation, and single-sideband (SSB) modulation. We extensively evaluate TUNER on two common datasets and seven representative SRS models. Results show that our attack can successfully bypass speaker recognition systems while remaining robust to various speakers, speech content, e

    An Investigation of an Acute Gastroenteritis Outbreak: Cronobacter sakazakii, a Potential Cause of Food-Borne Illness

    Get PDF
    Whole genome sequencing (WGS) has been widely used in traceability of food-borne outbreaks nowadays. Here, an interesting connection between Cronobacter sakazakii and food-borne acute gastroenteritis (AGE) was noticed. In October 2016, an AGE outbreak affecting 156 cases occurred in a local senior high school. Case-control study including 70 case-patients and 295 controls indicated a strong association between eating supper at school canteen of the outbreak onset and AGE, as revealed by the Odds Ratio (OR: 95.32). Six recovered Cronobacter strains were evaluated and compared using pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST) and WGS. A phylogenetic tree of whole genomic single nucleotide polymorphisms (wgSNPs) were generated to traceback the potential contamination source in this outbreak. C. sakazakii isolates S2 from a patient’s rectal swab and S4 from leftover food sample shared identical PFGE pattern and sequence type (ST73), and clustered tightly together in the SNP phylogenetic tree. C. sakazakii isolates S5 and S6 from food delivery containers were both ST4 but with different PFGE patterns. Cronobacter isolates S1 and S3 from two patients’ rectal swab were sequenced to be C. malonaticus and shared another PFGE pattern (ST567). The interesting feature of this study was the implication of C. sakazakii as a causative agent in food-borne AGE occurring in healthy adults, although C. sakazakii is considered as an opportunistic pathogen and generally affects neonates, infants and immunocompromised adults

    Quantitative Investigation of Surface Charge Distribution and Point Probing Characteristics of Spherical Scattering Electrical Field Probe for Precision Measurement of Miniature Internal Structures with High Aspect Ratios

    No full text
    For precision measurement of miniature internal structures with high aspect ratios, a spherical scattering electrical field probe (SSEP) is proposed based on charge signal detection. The characteristics and laws governing surface charge distribution on the probing ball of the SSEP are analyzed, with the spherical scattering electrical field modeled using a 3D seven-point finite difference method. The model is validated with finite element simulation by comparing with the analysis results of typical situations, in which probing balls of different diameters are used to probe a grounded plane with a probing gap of 0.3 μm. Results obtained with the proposed model and finite element method (FEM) simulation indicate that 31% of the total surface charge on a Ï•1 mm probing ball concentrates in an area that occupies 1% of the total probing ball surface. Moreover, this surface charge concentration remains unchanged when the surface being measured varies in geometry, or when the probing gap varies in sensing range. Based on this, the SSEP has realized approximate point probing capability with a virtual “needle” of electrical effect. Together with its non-contact sensing characteristics and 3D isotropy, it can, therefore, be concluded that the SSEP has great potential to be an ideal solution for precision measurement of miniature internal structures with high aspect ratios

    Design Optimization and Performance Evaluation of a Tillage Depth Precision Measurement System

    No full text
    International audienceTillage depth measuring is essential in modernization of agricultural production, including tillage depth, seed germination, plant growth and soil conservation. At present, there are no reliable measuring method or equipment for on-line tillage depth data acquisition. To solve this problem, equipment for real-time measuring tillage depth was designed based on ultrasonic sensing technology. This system comprises mainly mechanical constructions, hardware structure, software, specific measurement process and data processing technology. To improve the measuring accuracy, Kalman filter method is used to reduce the influence of uneven surface, weed, and stubble in field. This device was installed on subsoiler, and a field test was conducted. The test results show that: The accuracy of the ultrasonic measuring depth is comparable with the manual measuring method in the field condition of ploughed field, bare field and stubble field

    Adventitial Progenitor Cells of Human Great Saphenous Vein Enhance the Resolution of Venous Thrombosis via Neovascularization

    No full text
    Background. Vascular adventitia contains progenitor cells and is shown to participate in vascular remolding. Progenitor cells are recruited into the venous thrombi in mice to promote neovascularization. We hypothesized that the adventitial progenitor cells of human great saphenous vein (HGSV-AdPC) enhance the resolution of venous thrombosis via neovascularization. Methods. Human great saphenous vein (HGSV) was harvested from the patients with great saphenous vein varicose and sectioned for immunohistochemistry, or minced for progenitor cell primary culture, or placed in sodium dodecyl sulfate solution for decellularization. Human venous thrombi were collected from patients with great saphenous vein varicose and superficial thrombophlebitis. Infrarenal abdominal aorta of New Zealand white rabbits was replaced with interposing decellularized vessel, and the patency of the grafts was confirmed by ultrasonic examination. Animal venous thrombi in the left infrarenal vena cava of mice were produced with Prolene suture ligation and ophthalmic force clipping of this portion. After HGSVs were digested by collagenase, the CD34+CD117+ HGSV-AdPC were isolated on FACS system, labelled with CM-Dil, and transplanted into the adventitia of infrarenal vena cava of nude mice. The percentage of thrombus organization area to the thrombus area was calculated as the organization rate. The thrombus cell, endothelial cells, and macrophages in the thrombi were counted in sections. Cell smears and frozen sections of human saphenous veins and venous thrombi were labeled with Sca1, CD34, CD117, Flk1, CD31, and F4/80 antibodies. The CD34+CD117+ HGSV-AdPC were cultured in endothelial growth medium with vascular endothelial growth factor (VEGF) to induce endothelial cell differentiation and analyzed with real time-PCR, Western blotting, and tube formation assays. Results. Immunohistochemical staining showed that the CD34+CD117+ cells were located within the adventitia of HGSVs, and many CD34+ and CD117+ cells have emerged in the human venous thrombi. The number of progenitor cells within the marginal area of 7 days mice thrombi was shown to be Sca1+ ≈21%, CD34+ ≈12%, CD117+ ≈9%, and Flk1+ ≈5%. Many CD34+adventitial progenitor cells have migrated into the decellularized vessels. FACS showed that the number of CD34+CD117+ HGSV-AdPC in primary cultured cells as 1.2±0.07%. After CD34+CD117+HGSV-AdPC were transplanted into the adventitia of nude mice vena cava with venous thrombi, the organization rate, nucleate cell count, endothelial cells, and macrophage cells of thrombi were shown to be significantly increased. The transplanted CD34+CD117+ HGSV-AdPC at the adventitia have crossed the vein wall, entered the venous thrombi, and differentiated into endothelial cells. The CD34+CD117+ HGSV-AdPC in the culture medium in the presence of VEGF-promoted gene and protein expression of endothelial cell markers in vitro and induced tube formation. Conclusions. HGSV-AdPC could cross the vein wall and migrate from the adventitia into the venous thrombi. Increased HGSV-AdPC in the adventitia has enhanced the resolution of venous thrombi via differentiating into endothelial cells of neovascularization
    corecore