94 research outputs found

    TEA CEREMONY CULTURAL TEACHING PRACTICES FOR CHINESE UNIVERSITY STUDENTS: A PRELIMINARY STUDY FOR THE DEVELOPMENT OF ENGLISH TEACHING MATERIALS ON JAPANESE TEA CEREMONY

    Get PDF
    This study is a preliminary study for creating teaching materials for the development of global human resources who can communicate their own (Japanese) culture, such as the tea ceremony, to the world in English. This study aims to clarify what foreigners are interested in, what they find important, and what they would like to know more about the tea ceremony to create teaching materials reflecting foreigners’ interests and concerns. The results indicated that the participating students enjoyed hands-on activities, such as actually preparing and drinking tea and learning how to eat wagashi (traditional Japanese sweets), even in an online environment. Furthermore, some students demonstrated interest not only in hands-on experiences but also in the history of the tea ceremony, distinctions between Japanese and Chinese tea cultures, and various aspects of the tea ceremony, including tea, tea utensils, traditional clothing (kimono), and the differences among tea ceremony schools. Based on these findings, it is recommended to create educational materials for Japanese university students learning the tea ceremony in English that cover not only the fundamental etiquette of the tea ceremony, but also provide comprehensive knowledge about the broader aspects of the tea ceremony

    Vector DC magnetic-field sensing with reference microwave field using perfectly aligned nitrogen-vacancy centers in diamond

    Full text link
    The measurement of vector magnetic fields with high sensitivity and spatial resolution is important for both fundamental science and engineering applications. In particular, magnetic-field sensing with nitrogen-vacancy (NV) centers in diamond is a promising approach that can outperform existing methods. Recent studies have demonstrated vector DC magnetic-field sensing with perfectly aligned NV centers, which showed a higher readout contrast than NV centers having four equally distributed orientations. However, to estimate the azimuthal angle of the target magnetic field with respect to the NV axis in these previous approaches, it is necessary to apply a strong reference DC magnetic field, which can perturb the system to be measured. This is a crucial problem, especially when attempting to measure vector magnetic fields from materials that are sensitive to applied DC magnetic fields. Here, we propose a method to measure vector DC magnetic fields using perfectly aligned NV centers without reference DC magnetic fields. More specifically, we used the direction of linearly polarized microwave fields to induce Rabi oscillation as a reference and estimated the azimuthal angle of the target fields from the Rabi frequency. We further demonstrate the potential of our method to improve sensitivity by using entangled states to overcome the standard quantum limit. Our method of using a reference microwave field is a novel technique for sensitive vector DC magnetic-field sensing.Comment: 10 pages, 8 figure

    Electron-spin double resonance of nitrogen-vacancy centers in diamond under strong driving field

    Full text link
    The nitrogen-vacancy (NV) center in diamond has been the focus of research efforts because of its suitability for use in applications such as quantum sensing and quantum simulations. Recently, the electron-spin double resonance (ESDR) of NV centers has been exploited for detecting radio-frequency (RF) fields with continuous-wave optically detected magnetic resonance. However, the characteristic phenomenon of ESDR under a strong RF field remains to be fully elucidated. In this study, we theoretically and experimentally analyzed the ESDR spectra under strong RF fields by adopting the Floquet theory. Our analytical and numerical calculations could reproduce the ESDR spectra obtained by measuring the spin-dependent photoluminescence under the continuous application of microwaves and an RF field for a DC bias magnetic field perpendicular to the NV axis. We found that anticrossing structures that appear under a strong RF field are induced by the generation of RF-dressed states owing to the two-RF-photon resonances. Moreover, we found that 2n2n-RF-photon resonances were allowed by an unintentional DC bias magnetic field parallel to the NV axis. These results should help in the realization of precise MHz-range AC magnetometry with a wide dynamic range beyond the rotating wave approximation regime as well as Floquet engineering in open quantum systems.Comment: 11 pages, 4 figure

    Control of all the transitions between ground state manifolds of nitrogen vacancy centers in diamonds by applying external magnetic driving fields

    Get PDF
    We demonstrate control of all the three transitions among the ground state sublevels of NV centers by applying magnetic driving fields. To address the states of a specific NV axis among the four axes, we apply a magnetic field orthogonal to the NV axis. We control two transitions by microwave pulses and the remaining transition by radio frequency (RF) pulses. In particular, we investigate the dependence of Rabi oscillations on the frequency and intensity of the RF pulses. In addition, we perform a π pulse by the RF pulses and measured the coherence time between the ground state sublevels. Our results pave the way for control of NV centers for the realization of quantum information processing and quantum sensing

    Beneficial effect of tetrahydrobiopterin on ischemia-reperfusion injury in isolated perfused rat hearts

    Get PDF
    AbstractObjective: It has recently been proposed that nitric oxide synthase, in the presence of suboptimal levels of tetrahydrobiopterin, an essential cofactor of this enzyme, might favor increased production of oxygen radicals. The aim of this study was to clarify whether supplement with tetrahydrobiopterin would exert a cardioprotective effect against ischemia-reperfusion injury. Methods: Isolated perfused rat hearts were subjected to 30 minutes of global ischemia and 30 minutes of reperfusion at 37°C. Hearts were treated with tetrahydrobiopterin or vehicle for 5 minutes just before ischemia and during the first 5 minutes of the reperfusion period. Effects of tetrahydrobiopterin on left ventricular function, myocardial contents of lipid peroxidation and high-energy phosphates, and levels of lactate dehydrogenase and nitrite plus nitrate in perfusate during ischemia and after reperfusion were estimated and further compared with those of superoxide dismutase plus catalase or l-ascorbic acid. Results: Tetrahydrobiopterin and superoxide dismutase plus catalase both improved contractile and metabolic abnormalities in reperfused hearts. On the other hand, l-ascorbic acid at a dose having an equipotent radical scavenging activity with tetrahydrobiopterin did not significantly affect the postischemic changes. Although tetrahydrobiopterin and superoxide dismutase plus catalase significantly alleviated ischemic contracture during ischemia, diminished perfusate levels of nitrite plus nitrate after reperfusion were restored only with tetrahydrobiopterin. Conclusion: Results demonstrated that tetrahydrobiopterin lessens ischemia-reperfusion injury in isolated perfused rat hearts, probably independent of its intrinsic radical scavenging action. The cardioprotective effect of tetrahydrobiopterin implies that tetrahydrobiopterin could be a novel and effective therapeutic option in the treatment of ischemia-reperfusion injury.J Thorac Cardiovasc Surg 2002;124:775-8

    AC Magnetic Field Sensing Using Continuous-Wave Optically Detected Magnetic Resonance of Nitrogen Vacancy Centers in Diamond

    Get PDF
    Nitrogen-vacancy (NV) centers in diamond are considered sensors for detecting magnetic fields. Pulsed optically detected magnetic resonance (ODMR) is typically used to detect AC magnetic fields; however, this technique can only be implemented after careful calibration that involves aligning an external static magnetic field, measuring continuous-wave (CW) ODMR, determining the Rabi frequency, and setting the microwave phase. In contrast, CW-ODMR can be simply implemented by continuous application of green CW laser and a microwave filed. In this letter, we report a method that uses NV centers and CW-ODMR to detect AC magnetic fields. Unlike conventional methods that use NV centers to detect AC magnetic fields, the proposed method requires neither a pulse sequence nor an externally applied DC magnetic field; this greatly simplifies the procedure and apparatus needed to implement this method. This method provides a sensitivity of 2.5 {\mu}T/Hz1/2^{1/2} at room temperature. Thus, this simple alternative to existing AC magnetic field sensors paves the way for a practical and feasible quantum sensor.Comment: 5 pages, 4 figure

    Coalitional Extreme Desirability in Finitely Additive Economies with Asymmetric Information

    Get PDF
    We prove a coalitional core-Walras equivalence theorem for an asymmetric information exchange economy with a finitely additive measure space of agents, finitely many states of nature, and an infinite dimensional commodity space having the Radon-Nikodym property and whose positive cone has possibly empty interior. The result is based on a new cone condition, firstly developed in Centrone and Martellotti (2015), called coalitional extreme desirability. As a consequence, we also derive a new individualistic core-Walras equivalence result

    Phospho-Smad3 signaling is predictive biomarker for hepatocellular carcinoma risk assessment in primary biliary cholangitis patients

    Get PDF
    Introduction: Patients with primary biliary cholangitis (PBC) are at increased risk for development of hepatocellular carcinoma (HCC), particularly in the presence of comorbidities such as excessive alcohol consumption. Although liver fibrosis is an important risk factor for HCC development, earlier predictors of future HCC development in livers with little fibrosis are needed but not well defined. The transforming growth factor (TGF)-β/Smad signaling pathway participates importantly in hepatic carcinogenesis. Phosphorylated forms (phospho-isoforms) in Smad-related pathways can transmit opposing signals: cytostatic C-terminally-phosphorylated Smad3 (pSmad3C) and carcinogenic linker-phosphorylated Smad3 (pSmad3L) signals. Methods and results: To assess the balance between Smad signals as a biomarker of risk, we immunohistochemically compared Smad domain-specific Smad3 phosphorylation patterns among 52 PBC patients with various stages of fibrosis and 25 non-PBC patients with chronic hepatitis C virus infection. HCC developed in 7 of 11 PBC patients showing high pSmad3L immunoreactivity, but in only 2 of 41 PBC patients with low pSmad3L. In contrast, 9 of 20 PBC patients with minimal Smad3C phosphorylation developed HCC, while HCC did not occur during follow-up in 32 patients who retained hepatic tumor-suppressive pSmad3C. Further, PBC patients whose liver specimens showed high pSmad3L positivity were relatively likely to develop HCC even when little fibrosis was evident. Conclusion: In this study, Smad phospho-isoform status showed promise as a biomarker predicting likelihood of HCC occurrence in PBC. Eventually, therapies to shift favorably Smad phospho-isoforms might decrease likelihood of PBC-related HCC
    corecore