125 research outputs found

    Review of Mammarenavirus Biology and Replication

    Get PDF
    The family Arenaviridae is divided into three genera: Mammarenavirus, Reptarenavirus, and Hartmanivirus. The Mammarenaviruses contain viruses responsible for causing human hemorrhagic fever diseases including New World viruses Junin, Machupo, Guanarito, Sabia, and Chapare virus and Old World viruses Lassa, and Lujo virus. These two groups of arenaviruses share the same genome organization composed of two ambisense RNA segments. These segments contain four open reading frames that encode for four proteins: the nucleoprotein, glycoprotein precursor, L protein, and Z. Despite their genome similarities, these groups exhibit marked differences in their replication life cycles. This includes differences in attachment, entry, and immune evasion. By understanding the intricacy of replication in each of these viral species we can work to develop counter measures against human diseases. This includes the development of vaccines and antivirals for these emerging viral threats. Currently only the vaccine against Junin virus, Candid#1, is in use as well as Ribavirin for treatment of Lassa Fever. In addition, small molecule inhibitors can be developed to target various aspects of the virus life cycle. In these ways an understanding of the arenavirus replication cycle can be used to alleviate the mortality and morbidity of these infections worldwide

    The roles of XJ13 and XJ44-specific mutations within the Candid #1 GPC in Junin virus attenuation

    Get PDF
    Junin virus (JUNV) is a member of the Arenaviridae family of viruses and is the pathogen responsible for causing Argentine hemorrhagic fever, a potentially lethal disease endemic to Argentina. A live attenuated vaccine for human use, called Candid#1, is approved only in Argentina. Candid#1 vaccine strain of Junin virus was obtained through serial passage in mouse brain tissues followed by passage in Fetal Rhesus macaque lung fibroblast (FRhL) cells. Previously, the mutations responsible for attenuation of this virus in Guinea pigs were mapped in the gene encoding for glycoprotein precursor (GPC) protein. The resulting Candid#1 glycoprotein complex has been shown to cause endoplasmic reticulum (ER) stress in vitro resulting in the degradation of the GPC. To evaluate the attenuating properties of specific mutations within GPC, we created recombinant viruses expressing GPC mutations specific to key Candid#1 passages and evaluated their pathogenicity in our outbred Hartley guinea pig model of Argentine hemorrhagic fever. Here, we provide evidence that early mutations in GPC obtained through serial passaging attenuate the visceral disease and increase immunogenicity in guinea pigs. Specific mutations acquired prior to the 13th mouse brain passage (XJ13) are responsible for attenuation of the visceral disease while having no impact on the neurovirulence of Junin virus. Additionally, our findings demonstrate that the mutation within an N-linked glycosylation motif, acquired prior to the 44th mouse brain passage (XJ44), is unstable but necessary for complete attenuation and enhanced immunogenicity of Candid#1 vaccine strain. The highly conserved N-linked glycosylation profiles of arenavirus glycoproteins could therefore be viable targets for designing attenuating viruses for vaccine development against other arenavirus-associated illnesses

    Suppression of Fas-mediated apoptosis via steric shielding by filovirus glycoproteins

    Get PDF
    Apoptotic death of virus-infected cells is generally thought to be a defense mechanism to limit the spread of infectious virions by eliminating virus-producing cells in host animals. On the other hand, several viruses have been shown to have anti-apoptotic mechanisms to facilitate efficient viral replication and transmission. In this study, we found that the filovirus glycoprotein (GP) expressed on cell surfaces formed a steric shield over the Fas molecule and that GP-expressing cells showed resistance to cell death induced by a Fas agonistic antibody. These results suggest that filovirus GP-mediated steric shielding may interfere with the Fas-induced apoptotic signal transduction in infected cells and serve as an immune evasion mechanism for filoviruses. (C) 2013 Elsevier Inc. All rights reserved

    Factors responsible for pathogenicity in chickens of a low-pathogenic H7N7 avian influenza virus isolated from a feral duck

    Get PDF
    Highly pathogenic avian influenza viruses have poly-basic amino acid sequences at the cleavage site in their hemagglutinin (HA). Although this poly-basic region is a prerequisite factor for pathogenicity in chickens, not much is known about additional factors responsible for the acquisition of pathogenicity of the duck influenza virus in chickens. Here, we introduced multiple basic amino acid residues into the HA cleavage site of the A/duck/Hokkaido/Vac-2/2004 (H7N7) strain of avian influenza virus, which has low pathogenicity in chickens; the resultant Vac2sub-P0 strain was not intravenously pathogenic in chickens. In contrast, the Vac2sub-P3 strain, which was recovered from three consecutive passages of Vac2sub-P0 in chicks, was intravenously pathogenic in chickens. Six amino acid substitutions were identified by comparison of the Vac2sub-P3 and Vac2sub-P0 genomic sequences: Lys123Glu in PB2, Asn16Asp in PB1, Glu227Gly and Ile388Thr in HA, Gly228Arg in M1, and Leu46Pro in M2. The results of intravenous inoculations of chickens with recombinant virus indicated that all six amino acid substitutions were required to varying degrees for Vac2sub-P3 pathogenicity, with Glu227Gly and Ile388Thr in HA being particularly essential. These results reveal the roles of additional viral factors in the acquisition of pathogenicity in addition to the previously characterized role of the poly-basic amino acid sequences at the HA cleavage site

    Review of Mammarenavirus Biology and Replication

    No full text
    The family Arenaviridae is divided into three genera: Mammarenavirus, Reptarenavirus, and Hartmanivirus. The Mammarenaviruses contain viruses responsible for causing human hemorrhagic fever diseases including New World viruses Junin, Machupo, Guanarito, Sabia, and Chapare virus and Old World viruses Lassa, and Lujo virus. These two groups of arenaviruses share the same genome organization composed of two ambisense RNA segments. These segments contain four open reading frames that encode for four proteins: the nucleoprotein, glycoprotein precursor, L protein, and Z. Despite their genome similarities, these groups exhibit marked differences in their replication life cycles. This includes differences in attachment, entry, and immune evasion. By understanding the intricacy of replication in each of these viral species we can work to develop counter measures against human diseases. This includes the development of vaccines and antivirals for these emerging viral threats. Currently only the vaccine against Junin virus, Candid#1, is in use as well as Ribavirin for treatment of Lassa Fever. In addition, small molecule inhibitors can be developed to target various aspects of the virus life cycle. In these ways an understanding of the arenavirus replication cycle can be used to alleviate the mortality and morbidity of these infections worldwide

    A polymorphism of the TIM-1 IgV domain: Implications for the susceptibility to filovirus infection

    Get PDF
    Filoviruses, including Ebola and Marburg viruses, cause severe hemorrhagic fever in humans and nonhuman primates with mortality rates of up to 90%. Human T-cell immunoglobulin and mucin domain 1 (TIM-I) is one of the host proteins that have been shown to promote filovirus entry into cells. In this study, we cloned TIM-1 genes from three different African green monkey kidney cell lines (Vero E6, COS-I, and BSC-1) and found that TIM-1 of Vero E6 had a 23-amino acid deletion and 6 amino acid substitutions compared with those of COS-1 and BSC-1. Interestingly, Vero E6 TIM-I had a greater ability to promote the infectivity of vesicular stomatitis viruses pseudotyped with filovirus glycoproteins than COS-1-derived TIM-I. We further found that the increased ability of Vero E6 TIM-1 to promote virus infectivity was most likely due to a single amino acid difference between these TIM-1s. These results suggest that a polymorphism of the TIM-I molecules is one of the factors that influence cell susceptibility to filovirus infection, providing a new insight into the molecular basis for the filovirus host range. (C) 2014 Elsevier Inc. All rights reserved

    Characterization of the glycoproteins of bat-derived influenza viruses

    Get PDF
    Recently found bat-derived influenza viruses (BatlVs) have hemagglutinin (HA) and neuraminidase (NA) gene segments distinct from those of previously known influenza A viruses. However, pathogenicities of these BatlVs remain unknown since infectious virus strains have not been isolated yet. To gain insight into the biological properties of BatlVs, we generated vesicular stomatitis viruses (VSVs) pseudotyped with the BatIV HA and NA. We found that VSVs pseudotyped with BatIV HAs and NAs efficiently infected particular bat cell lines but not those derived from primates, and that proteolytic cleavage with a trypsinlike protease was necessary for HA-mediated virus entry. Treatment of the susceptible bat cells with some enzymes and inhibitors revealed that BatIV HAs might recognize some cellular glycoproteins as receptors rather than the sialic acids used for the other known influenza viruses. These data provide fundamental information on the mechanisms underlying the cellular entry and host restriction of BatIVs. (C) 2016 Elsevier Inc. All rights reserved

    A complement component C1q-mediated mechanism of antibody-dependent enhancement of Ebola virus infection

    No full text
    Besides the common Fc receptor (FcR)-mediated mechanism of antibody-dependent enhancement (ADE), Ebola virus (EBOV) is known to utilize the complement component C1q for ADE of infection. This mechanism is FcR-independent and mediated by cross-linking of virus-antibody-C1q complexes to cell surface C1q receptors, leading to enhanced viral entry into cells. Using confocal microscopy, we found that virus-like particles (VLPs) consisting of EBOV glycoprotein, nucleoprotein, and matrix protein attached to the surface of human kidney 293 cells more efficiently in the presence of an ADE monoclonal antibody and C1q than with the antibody or C1q alone, and that there was no significant difference in the efficiency of VLP uptake into endosomes between the C1q-mediated ADE and non-ADE entry. Accordingly, both ADE and non-ADE infection were similarly decreased by inhibitors of the signaling pathways known to be required for endocytosis. These results suggest that C1q-mediated ADE of EBOV infection is simply caused by increased attachment of virus particles to the cell surface, which is distinct from the mechanism of FcR-mediated ADE requiring intracellular signaling to promote phagocytosis/macropinocytosis. Author summary Ebola virus (EBOV) utilizes the complement component C1q for antibody-dependent enhancement (ADE) of infection. We found that an ADE antibody increased viral attachment in the presence of C1q and that there was no significant difference in the efficiency of viral uptake into endosomes between the C1q-mediated ADE and non-ADE entry. Accordingly, both ADE and non-ADE infection were similarly decreased by inhibitors of the signaling pathways for endocytosis. These results suggest that C1q-mediated ADE of EBOV infection is simply caused by increased viral attachment to the cell surface, most likely via cross-linking of virus-antibody-C1q complexes to cellular C1q receptors
    corecore