1,124 research outputs found

    Beads-on-String Model for Virtual Rectum Surgery Simulation

    Get PDF
    A beads-on-string model is proposed to handle the deformation and collision of the rectum in virtual surgery simulation. The idea is firstly inspired by the observation of the similarity in shape shared by a rectum with regular bulges and a string of beads. It is beneficial to introduce an additional layer of beads, which provides an interface to map the deformation of centreline to the associated mesh in an elegant manner and a bounding volume approximation in collision handling. Our approach is carefully crafted to achieve high computational efficiency and retain its physical basis. It can be implemented for real time surgery simulation application

    HiPSC-derived cardiac tissue for disease modeling and drug discovery

    Get PDF
    Li, J.; Hua, Y.; Miyagawa, S.; Zhang, J.; Li, L.; Liu, L.; Sawa, Y. hiPSC-Derived Cardiac Tissue for Disease Modeling and Drug Discovery. Int. J. Mol. Sci. 2020, 21, 8893

    Generative Model Based Noise Robust Training for Unsupervised Domain Adaptation

    Full text link
    Target domain pseudo-labelling has shown effectiveness in unsupervised domain adaptation (UDA). However, pseudo-labels of unlabeled target domain data are inevitably noisy due to the distribution shift between source and target domains. This paper proposes a Generative model-based Noise-Robust Training method (GeNRT), which eliminates domain shift while mitigating label noise. GeNRT incorporates a Distribution-based Class-wise Feature Augmentation (D-CFA) and a Generative-Discriminative classifier Consistency (GDC), both based on the class-wise target distributions modelled by generative models. D-CFA minimizes the domain gap by augmenting the source data with distribution-sampled target features, and trains a noise-robust discriminative classifier by using target domain knowledge from the generative models. GDC regards all the class-wise generative models as generative classifiers and enforces a consistency regularization between the generative and discriminative classifiers. It exploits an ensemble of target knowledge from all the generative models to train a noise-robust discriminative classifier and eventually gets theoretically linked to the Ben-David domain adaptation theorem for reducing the domain gap. Extensive experiments on Office-Home, PACS, and Digit-Five show that our GeNRT achieves comparable performance to state-of-the-art methods under single-source and multi-source UDA settings
    • …
    corecore