54 research outputs found

    Effective Removal of Sulfanilic Acid From Water Using a Low-Pressure Electrochemical RuO2-TiO2@Ti/PVDF Composite Membrane

    Get PDF
    Removal of sulfanilic acid (SA) from water is an urgent but still challenging task. Herein, we developed a low pressure electrochemical membrane filtration (EMF) system for SA decontamination using RuO2-TiO2@Ti/PVDF composite membrane to serve as not only a filter but also an anode. Results showed that efficient removal of SA was achieved in this EMF system. At a charging voltage of 1.5 V and a electrolyte concentration of 15 mM, flow-through operation with a hydraulic retention time (HRT) of 2 h led to a high SA removal efficiency (80.4%), as expected from the improved contact reaction of this compound with ROS present at the anode surface. Cyclic voltammetry (CV) analysis indicated that the direct anodic oxidation played a minor role in SA degradation. Electron spin resonance (ESR) spectra demonstrated the production of •OH in the EMF system. Compared to the cathodic polarization, anodic generated ROS was more likely responsible for SA removal. Scavenging tests suggested that adsorbed •OH on the anode (>•OH) played a dominant role in SA degradation, while O2•- was an important intermediate oxidant which mediated the production of •OH. The calculated mineralization current efficiency (MCE) of the flow-through operated system 29.3% with this value much higher than that of the flow-by mode (5.1%). As a consequence, flow-through operation contributed to efficient oxidation of SA toward CO2 and nontoxic carboxylic acids accounting for 71.2% of initial C. These results demonstrate the potential of the EMF system to be used as an effective technology for water decontamination

    Numerical simulation of mechanical compaction and pore evolution of sandstone considering particle breakage

    Get PDF
    Mechanical compaction is an important diagenetic process in sandstone reservoirs. Particle breakage, which commonly occurs during mechanical compaction, plays a significant role in controlling the physical properties of the reservoir. However, existing numerical simulation methods have limitations in simulating mechanical compaction when considering particle breakage. In this study, a discrete element simulation method of mechanical compaction was proposed based on particle cutting, and the experimental results reported in the literature were used to calibrate the simulation parameters. Finally, this method was applied to the simulation of the mechanical compaction of sandstone to analyze the pore evolution process. The results show that the new simulation method has high computational efficiency and can reflect the process of particle breakage. The simulation results coincide well with the experimental results. In the simulated mechanical compacted process of coarse sandstone, particle breakage is strong in the high-stress stage with a vertical stress of 30 MPa–50 MPa. The porosity and mean radii of pores and throats decreased rapidly, and the number of pores and throats increased rapidly in the high-stress stage. When the vertical stress reached 50 MPa, compared to the simulation results without considering particle breakage, the porosity difference rate caused by particle breakage was 4.63%; the radius difference rates of pores and throats were 2.78% and 6.8%, and the number difference rates of pores and throats were 4.95% and 8.74%, respectively. In the process of mechanical compaction, the pore evolution of the reservoir is controlled by the filling of the pre-existing pore space by the fragments generated through particle breakage and the generation of microfractures. Additionally, the simulation method presented in this study can be applied to complex geological conditions and can be combined with other reservoir simulation methods. The simulation results can provide rich training samples for artificial intelligence and other emerging technologies

    ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer.

    Get PDF
    The androgen receptor (AR) is overexpressed and hyperactivated in human castration-resistant prostate cancer (CRPC). However, the determinants of AR overexpression in CRPC are poorly defined. Here we show that retinoic acid receptor-related orphan receptor γ (ROR-γ) is overexpressed and amplified in metastatic CRPC tumors, and that ROR-γ drives AR expression in the tumors. ROR-γ recruits nuclear receptor coactivator 1 and 3 (NCOA1 and NCOA3, also known as SRC-1 and SRC-3) to an AR-ROR response element (RORE) to stimulate AR gene transcription. ROR-γ antagonists suppress the expression of both AR and its variant AR-V7 in prostate cancer (PCa) cell lines and tumors. ROR-γ antagonists also markedly diminish genome-wide AR binding, H3K27ac abundance and expression of the AR target gene network. Finally, ROR-γ antagonists suppressed tumor growth in multiple AR-expressing, but not AR-negative, xenograft PCa models, and they effectively sensitized CRPC tumors to enzalutamide, without overt toxicity, in mice. Taken together, these results establish ROR-γ as a key player in CRPC by acting upstream of AR and as a potential therapeutic target for advanced PCa

    A Searchable Encryption with Forward/Backward Security and Constant Storage

    No full text
    Dynamic searchable encryption satisfies users’ needs for ciphertext retrieval on semi-trusted servers, while allowing users to update server-side data. However, cloud servers with dynamically updatable data are vulnerable to information abuse and file injection attacks, and current public key-based dynamic searchable encryption algorithms are often complicated in construction and high in computational overhead, which is not efficient for practical applications. In addition, the client’s storage costs grow linearly with the number of keywords in the database, creating a new bottleneck when the size of the keyword set is large. To solve the above problems, a dynamic searchable encryption scheme that uses a double-layer structure, while satisfying forward and backward security, is proposed. The double-layer structure maintains a constant client-side storage cost while guaranteeing forward and backward security and further reduces the algorithm overhead by avoiding bilinear pairings in the encryption and decryption operations. The analysis results show that the scheme is more advantageous in terms of security and computational efficiency than the existing dynamic searchable encryption scheme under the public key cryptosystem. It is also suitable for the big data communication environment

    A Searchable Encryption with Forward/Backward Security and Constant Storage

    No full text
    Dynamic searchable encryption satisfies users’ needs for ciphertext retrieval on semi-trusted servers, while allowing users to update server-side data. However, cloud servers with dynamically updatable data are vulnerable to information abuse and file injection attacks, and current public key-based dynamic searchable encryption algorithms are often complicated in construction and high in computational overhead, which is not efficient for practical applications. In addition, the client’s storage costs grow linearly with the number of keywords in the database, creating a new bottleneck when the size of the keyword set is large. To solve the above problems, a dynamic searchable encryption scheme that uses a double-layer structure, while satisfying forward and backward security, is proposed. The double-layer structure maintains a constant client-side storage cost while guaranteeing forward and backward security and further reduces the algorithm overhead by avoiding bilinear pairings in the encryption and decryption operations. The analysis results show that the scheme is more advantageous in terms of security and computational efficiency than the existing dynamic searchable encryption scheme under the public key cryptosystem. It is also suitable for the big data communication environment

    Investigation of differences in the protein transport capability of homochiral nanochannels

    No full text
    Chiral recognition plays a crucial role in the normal functioning of biological systems. The recognition of proteins in chiral environments underpins many fundamental life processes. Taking advantage of the distinct interactions between different proteins and chiral environments, this study presents the design of homochiral metal–organic framework (MOF)/nanochannels based membrane separator, enabling highly selective and high-throughput protein separation. The chiral separation membrane was fabricated by employing TiO2 nanochannel membrane (TM) as the supporting membrane and Ti ion source. Using terephthalic acid (BDC) and d/l-phenylalanine (DP/LP) as ligands, a layered TiMOF (MIL-125(Ti) used in this study) incorporating chiral selector molecules (named as DP/M and LP/M) were synthesized in situ within the TiO2 nanochannels. The bovine serum albumin (BSA) adsorption capacity of DP/M decorated TM was demonstrated to be 2.8 times higher than that of LP/M decorated TM, and was found to be related to the content of the chiral selector DP in the separation membrane. Furthermore, different recognition abilities by the chiral channels were observed for proteins with different isoelectric points. Based on a comprehensive exploration of the variations in the interaction forces between protein and chiral selector molecules, a nanoscale chromatography column-like separation model was proposed. The chiral separation membranes designed in this study provide a new platform for understanding the interactions between chiral compounds and proteins, and open up new avenues for fabricating chiral bio-interface materials, elucidating the role of chiral recognition in biological systems, and developing novel biomaterials and devices

    Research on the Rolling Process of SMA-13 Asphalt Surface Layer for Bridge Decks Based on Compaction and Skid Resistance Equilibrium Problems

    No full text
    In order to solve the equilibrium problem related to compaction degree, structural integrity of skid resistance, and skid resistance of asphalt wearing layer on a concrete bridge deck, the influence of rolling mode on compaction degree, structural integrity of skid resistance, and skid resistance performance was analyzed according to compaction curve characteristics, image processing technology, and laser method from the compaction mechanism and temperature control of rolling equipment. The results showed that the compaction degree and rolling times of an SMA-13 asphalt wearing course on the bridge deck could be characterized by a logarithmic model, and the model parameters had clear physical significance. Compared with the vibratory roller, the oscillation roller could achieve a greater and more stable compaction degree of the mixture and maintain a better density, compaction degree, and void ratio after 5 times of oscillation rolling. The pavement wear characteristics were extracted by a digital image method. The results showed that with the increase in rolling times, the rolling temperature decreased gradually, and the wear rate of surface texture increased significantly. The multiscale evaluation of pavement antiskid performance by a laser method showed that the surface structure gradually decreased and tended to be stable (1.2 mm) with the increase in rolling times of the vibratory roller, the microscopic texture density increased with the increase in rolling times, and the proportion of acute angle (<90°) in the peak angle of the surface texture profile decreased with the increase in rolling times. The SMA-13 asphalt wearing course on the bridge deck was rolled by a vibratory roller for 6 times, so as to achieve the balance of compaction degree, structural integrity, and skid resistance

    Study of Internal Drainage Systems for Steel Bridge Deck Pavements

    No full text
    As large span steel bridges develop rapidly, the type of steel deck paving is also diversifying. However, the current steel deck paving layer is a dense-graded mixture of both upper and lower layers. This makes it difficult for water to drain out of the dense deck when it enters the interior of the deck, and the deck is easily damaged by the traffic load. This paper aims to prolong the service life of the pavement and solve the problem that the pavement is prone to water damage under the existing pavement system. In this paper, a new steel bridge deck paving system is formed by developing a new type of waterproofing binder layer material and developing an open-graded paving layer underlayment. Through indoor tests and finite element software analysis, the effect of the environment on the pull-out strength of the waterproofing binder layer material under different permaculture conditions is investigated; a suitable void ratio control range for the paving layer is explored through paving layer seepage analysis and indoor tests. The study revealed that the new epoxy resin waterproofing bonding layer was able to maintain a large pull-out strength value in a 60 °C water bath for 2 weeks. The paving with void ratios of 18, 20, and 22% were all able to drain 50% of the water inside the paving within 2 h, with excellent drainage capacity. Based on the modeling analysis and indoor test results, the target void ratio of the asphalt mix under the pavement is recommended to be controlled at 20–22%, with a void ratio in this range to solve the problem of water entering the steel bridge deck pavement and causing pavement distress

    Study of Internal Drainage Systems for Steel Bridge Deck Pavements

    No full text
    As large span steel bridges develop rapidly, the type of steel deck paving is also diversifying. However, the current steel deck paving layer is a dense-graded mixture of both upper and lower layers. This makes it difficult for water to drain out of the dense deck when it enters the interior of the deck, and the deck is easily damaged by the traffic load. This paper aims to prolong the service life of the pavement and solve the problem that the pavement is prone to water damage under the existing pavement system. In this paper, a new steel bridge deck paving system is formed by developing a new type of waterproofing binder layer material and developing an open-graded paving layer underlayment. Through indoor tests and finite element software analysis, the effect of the environment on the pull-out strength of the waterproofing binder layer material under different permaculture conditions is investigated; a suitable void ratio control range for the paving layer is explored through paving layer seepage analysis and indoor tests. The study revealed that the new epoxy resin waterproofing bonding layer was able to maintain a large pull-out strength value in a 60 &deg;C water bath for 2 weeks. The paving with void ratios of 18, 20, and 22% were all able to drain 50% of the water inside the paving within 2 h, with excellent drainage capacity. Based on the modeling analysis and indoor test results, the target void ratio of the asphalt mix under the pavement is recommended to be controlled at 20&ndash;22%, with a void ratio in this range to solve the problem of water entering the steel bridge deck pavement and causing pavement distress
    • …
    corecore