198 research outputs found

    Graph Augmentation Clustering Network

    Full text link
    Existing graph clustering networks heavily rely on a predefined graph and may fail if the initial graph is of low quality. To tackle this issue, we propose a novel graph augmentation clustering network capable of adaptively enhancing the initial graph to achieve better clustering performance. Specifically, we first integrate the node attribute and topology structure information to learn the latent feature representation. Then, we explore the local geometric structure information on the embedding space to construct an adjacency graph and subsequently develop an adaptive graph augmentation architecture to fuse that graph with the initial one dynamically. Finally, we minimize the Jeffreys divergence between multiple derived distributions to conduct network training in an unsupervised fashion. Extensive experiments on six commonly used benchmark datasets demonstrate that the proposed method consistently outperforms several state-of-the-art approaches. In particular, our method improves the ARI by more than 9.39\% over the best baseline on DBLP. The source codes and data have been submitted to the appendix

    Deep Attention-guided Graph Clustering with Dual Self-supervision

    Full text link
    Existing deep embedding clustering works only consider the deepest layer to learn a feature embedding and thus fail to well utilize the available discriminative information from cluster assignments, resulting performance limitation. To this end, we propose a novel method, namely deep attention-guided graph clustering with dual self-supervision (DAGC). Specifically, DAGC first utilizes a heterogeneity-wise fusion module to adaptively integrate the features of an auto-encoder and a graph convolutional network in each layer and then uses a scale-wise fusion module to dynamically concatenate the multi-scale features in different layers. Such modules are capable of learning a discriminative feature embedding via an attention-based mechanism. In addition, we design a distribution-wise fusion module that leverages cluster assignments to acquire clustering results directly. To better explore the discriminative information from the cluster assignments, we develop a dual self-supervision solution consisting of a soft self-supervision strategy with a triplet Kullback-Leibler divergence loss and a hard self-supervision strategy with a pseudo supervision loss. Extensive experiments validate that our method consistently outperforms state-of-the-art methods on six benchmark datasets. Especially, our method improves the ARI by more than 18.14% over the best baseline

    Single-breath-hold photoacoustic computed tomography of the breast

    Get PDF
    We have developed a single-breath-hold photoacoustic computed tomography (SBH-PACT) system to reveal detailed angiographic structures in human breasts. SBH-PACT features a deep penetration depth (4 cm in vivo) with high spatial and temporal resolutions (255 µm in-plane resolution and a 10 Hz 2D frame rate). By scanning the entire breast within a single breath hold (~15 s), a volumetric image can be acquired and subsequently reconstructed utilizing 3D back-projection with negligible breathing-induced motion artifacts. SBH-PACT clearly reveals tumors by observing higher blood vessel densities associated with tumors at high spatial resolution, showing early promise for high sensitivity in radiographically dense breasts. In addition to blood vessel imaging, the high imaging speed enables dynamic studies, such as photoacoustic elastography, which identifies tumors by showing less compliance. We imaged breast cancer patients with breast sizes ranging from B cup to DD cup, and skin pigmentations ranging from light to dark. SBH-PACT identified all the tumors without resorting to ionizing radiation or exogenous contrast, posing no health risks

    Convolutional Neural Networks with Dynamic Regularization

    Full text link
    Regularization is commonly used for alleviating overfitting in machine learning. For convolutional neural networks (CNNs), regularization methods, such as DropBlock and Shake-Shake, have illustrated the improvement in the generalization performance. However, these methods lack a self-adaptive ability throughout training. That is, the regularization strength is fixed to a predefined schedule, and manual adjustments are required to adapt to various network architectures. In this paper, we propose a dynamic regularization method for CNNs. Specifically, we model the regularization strength as a function of the training loss. According to the change of the training loss, our method can dynamically adjust the regularization strength in the training procedure, thereby balancing the underfitting and overfitting of CNNs. With dynamic regularization, a large-scale model is automatically regularized by the strong perturbation, and vice versa. Experimental results show that the proposed method can improve the generalization capability on off-the-shelf network architectures and outperform state-of-the-art regularization methods.Comment: 7 pages. Accepted for Publication at IEEE TNNL

    Split Time Series into Patches: Rethinking Long-term Series Forecasting with Dateformer

    Full text link
    Time is one of the most significant characteristics of time-series, yet has received insufficient attention. Prior time-series forecasting research has mainly focused on mapping a past subseries (lookback window) to a future series (forecast window), and time of series often just play an auxiliary role even completely ignored in most cases. Due to the point-wise processing within these windows, extrapolating series to longer-term future is tough in the pattern. To overcome this barrier, we propose a brand-new time-series forecasting framework named Dateformer who turns attention to modeling time instead of following the above practice. Specifically, time-series are first split into patches by day to supervise the learning of dynamic date-representations with Date Encoder Representations from Transformers (DERT). These representations are then fed into a simple decoder to produce a coarser (or global) prediction, and used to help the model seek valuable information from the lookback window to learn a refined (or local) prediction. Dateformer obtains the final result by summing the above two parts. Our empirical studies on seven benchmarks show that the time-modeling method is more efficient for long-term series forecasting compared with sequence modeling methods. Dateformer yields state-of-the-art accuracy with a 40% remarkable relative improvement, and broadens the maximum credible forecasting range to a half-yearly level
    corecore