71 research outputs found

    Dynamic Walking of Bipedal Robots on Uneven Stepping Stones via Adaptive-frequency MPC

    Full text link
    This paper presents a novel Adaptive-frequency MPC framework for bipedal locomotion over terrain with uneven stepping stones. In detail, we intend to achieve adaptive foot placement and gait period for bipedal periodic walking gait with this MPC, in order to traverse terrain with discontinuities without slowing down. We pair this adaptive-frequency MPC with a kino-dynamics trajectory optimization for optimal gait periods, center of mass (CoM) trajectory, and foot placements. We use whole-body control (WBC) along with adaptive-frequency MPC to track the optimal trajectories from the offline optimization. In numerical validations, our adaptive-frequency MPC framework with optimization has shown advantages over fixed-frequency MPC. The proposed framework can control the bipedal robot to traverse through uneven stepping stone terrains with perturbed stone heights, widths, and surface shapes while maintaining an average speed of 1.5 m/s.Comment: 6 pages, 7 figures, 1 tabl

    Multi-contact MPC for Dynamic Loco-manipulation on Humanoid Robots

    Full text link
    This paper presents a novel method to control humanoid robot dynamic loco-manipulation with multiple contact modes via Multi-contact Model Predictive Control (MPC) framework. In this framework, we proposed a multi-contact dynamics model that can represent different contact modes in loco-manipulation (e.g., hand contact with object and foot contacts with ground). The proposed dynamics model simplifies the object dynamics as external force applied to the system (external force model) to ensure the simplicity and feasibility of the MPC problem. In numerical validations, our Multi-contact MPC framework only needs contact timings of each task and desired states to give MPC the knowledge of changes in contact modes in the prediction horizons in loco-manipulation. The proposed framework can control the humanoid robot to complete multi-tasks dynamic loco-manipulation applications such as efficiently picking up and dropping off objects while turning and walking.Comment: 6 pages, 7 figures, submitted to L-CSS and ACC 202

    Seismic Data Strong Noise Attenuation Based on Diffusion Model and Principal Component Analysis

    Full text link
    Seismic data noise processing is an important part of seismic exploration data processing, and the effect of noise elimination is directly related to the follow-up processing of data. In response to this problem, many authors have proposed methods based on rank reduction, sparse transformation, domain transformation, and deep learning. However, such methods are often not ideal when faced with strong noise. Therefore, we propose to use diffusion model theory for noise removal. The Bayesian equation is used to reverse the noise addition process, and the noise reduction work is divided into multiple steps to effectively deal with high-noise situations. Furthermore, we propose to evaluate the noise level of blind Gaussian seismic data using principal component analysis to determine the number of steps for noise reduction processing of seismic data. We train the model on synthetic data and validate it on field data through transfer learning. Experiments show that our proposed method can identify most of the noise with less signal leakage. This has positive significance for high-precision seismic exploration and future seismic data signal processing research.Comment: 10 pages, 13 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Directional motion of dielectric droplets on polymer-coated conductor driven by electric corona discharge

    Get PDF
    Achieving better control of liquid droplet movement is an important subject for academic research and industrial applications. In this study, we investigate the use of electric corona discharge to drive and control oil droplet movement. For a fully covered polymer-coated copper plate, all droplets on the surface were found to move outward in the same direction. Interestingly, for a polymer coating a hole directly beneath a needle biased with a high DC voltage, we observed the existence of a zone boundary at which all of the droplets within the boundary move inward, whereas droplets outside the boundary move outward. The boundary appeared to depend on the hole size and the voltage bias. Our model simulations reasonably agree well with the experimental measurements of these peculiar phenomena
    corecore