36 research outputs found

    State of the art of immunoassay methods for B-type natriuretic peptides: An update

    Get PDF
    The aim of this review article is to give an update on the state of the art of the immunoassay methods for the measurement of B-type natriuretic peptide (BNP) and its related peptides. Using chromatographic procedures, several studies reported an increasing number of circulating peptides related to BNP in human plasma of patients with heart failure. These peptides may have reduced or even no biological activity. Furthermore, other studies have suggested that, using immunoassays that are considered specific for BNP, the precursor of the peptide hormone, proBNP, constitutes a major portion of the peptide measured in plasma of patients with heart failure. Because BNP immunoassay methods show large (up to 50%) systematic differences in values, the use of identical decision values for all immunoassay methods, as suggested by the most recent international guidelines, seems unreasonable. Since proBNP significantly cross-reacts with all commercial immunoassay methods considered specific for BNP, manufacturers should test and clearly declare the degree of cross-reactivity of glycosylated and non-glycosylated proBNP in their BNP immunoassay methods. Clinicians should take into account that there are large systematic differences between methods when they compare results from different laboratories that use different BNP immunoassays. On the other hand, clinical laboratories should take part in external quality assessment (EQA) programs to evaluate the bias of their method in comparison to other BNP methods. Finally, the authors believe that the development of more specific methods for the active peptide, BNP1–32, should reduce the systematic differences between methods and result in better harmonization of results

    Troponin T-release associates with cardiac radiation doses during adjuvant left-sided breast cancer radiotherapy

    Get PDF
    Background Adjuvant radiotherapy (RT) for left-sided breast cancer increases cardiac morbidity and mortality. For the heart, no safe radiation threshold has been established. Troponin T is a sensitive marker of myocardial damage. Our aim was to evaluate the effect of left-sided breast cancer RT on serum high sensitivity troponin T (hscTnT) levels and its association with cardiac radiation doses and echocardiographic parameters. Methods A total of 58 patients with an early stage, left-sided breast cancer or ductal carcinoma in situ (DCIS) who received adjuvant breast RT without prior chemotherapy were included in this prospective, non-randomized study. Serum samples were taken before, during and after RT. An increase of hscTnT >30 % was predefined as significant. A comprehensive 2D echocardiograph and electrocardiogram (ECG) were performed before and after RT. Dose-volume histograms (DVHs) were generated for different cardiac structures. Results The hscTnT increased during RT from baseline in 12/58 patients (21 %). Patients with increased hscTnT values (group A, N = 12) had significantly higher radiation doses for the whole heart (p = 0.02) and left ventricle (p = 0.03) than patients without hscTnT increase (group B, N = 46). For the left anterior descending artery (LAD), differences between groups A and B were found in volumes receiving 15 Gy (p = 0.03) and 20 Gy (p = 0.03) Furthermore, after RT, the interventricular septum thickened (p = 0.01), and the deceleration time was prolonged (p = 0.008) more in group A than in group B. Conclusions The increase in hscTnT level during adjuvant RT was positively associated with the cardiac radiation doses for the whole heart and LV in chemotherapy-naive breast cancer patients. Whether these acute subclinical changes increase the risk of excessive long-term cardiovascular morbidity or mortality, will be addressed in the follow-up of our patients.BioMed Central open acces

    UMBRELLA protocol: systematic reviews of multivariable biomarker prognostic models developed to predict clinical outcomes in patients with heart failure.

    Get PDF
    Background: Heart failure (HF) is a chronic and common condition with a rising prevalence, especially in the elderly. Morbidity and mortality rates in people with HF are similar to those with common forms of cancer. Clinical guidelines highlight the need for more detailed prognostic information to optimise treatment and care planning for people with HF. Besides proven prognostic biomarkers and numerous newly developed prognostic models for HF clinical outcomes, no risk stratification models have been adequately established. Through a number of linked systematic reviews, we aim to assess the quality of the existing models with biomarkers in HF and summarise the evidence they present. Methods: We will search MEDLINE, EMBASE, Web of Science Core Collection, and the prognostic studies database maintained by the Cochrane Prognosis Methods Group combining sensitive published search filters, with no language restriction, from 1990 onwards. Independent pairs of reviewers will screen and extract data. Eligible studies will be those developing, validating, or updating any prognostic model with biomarkers for clinical outcomes in adults with any type of HF. Data will be extracted using a piloted form that combines published good practice guidelines for critical appraisal, data extraction, and risk of bias assessment of prediction modelling studies. Missing information on predictive performance measures will be sought by contacting authors or estimated from available information when possible. If sufficient high quality and homogeneous data are available, we will meta-analyse the predictive performance of identified models. Sources of between-study heterogeneity will be explored through meta-regression using pre-defined study-level covariates. Results will be reported narratively if study quality is deemed to be low or if the between-study heterogeneity is high. Sensitivity analyses for risk of bias impact will be performed. Discussion: This project aims to appraise and summarise the methodological conduct and predictive performance of existing clinically homogeneous HF prognostic models in separate systematic reviews.Registration: PROSPERO registration number CRD42019086990
    corecore