26 research outputs found

    Retrieving Precipitable Water Vapor From Shipborne Multi‐GNSS Observations

    Get PDF
    ©2019. American Geophysical UnionPrecipitable water vapor (PWV) is an important parameter for climate research and a crucial factor to achieve high accuracy in satellite geodesy and satellite altimetry. Currently Global Navigation Satellite System (GNSS) PWV retrieval using static Precise Point Positioning is limited to ground stations. We demonstrated the PWV retrieval using kinematic Precise Point Positioning method with shipborne GNSS observations during a 20‐day experiment in 2016 in Fram Strait, the region of the Arctic Ocean between Greenland and Svalbard. The shipborne GNSS PWV shows an agreement of ~1.1 mm with numerical weather model data and radiosonde observations, and a root‐mean‐square of ~1.7 mm compared to Satellite with ARgos and ALtiKa PWV. An improvement of 10% is demonstrated with the multi‐GNSS compared to the Global Positioning System solution. The PWV retrieval was conducted under different sea state from calm water up to gale. Such shipborne GNSS PWV has the promising potential to improve numerical weather forecasts and satellite altimetry

    Modeling wide-area tropospheric delay corrections for fast PPP ambiguity resolution

    Get PDF
    The performance of precise point positioning (PPP) has been significantly improved thanks to the continuous improvements in satellite orbit, clock, and ambiguity resolution (AR) technologies, but the convergence speed remains a limiting factor in real-time PPP applications. To improve the PPP precision and convergence time, tropospheric delays from a regional network can be modeled to provide precise correction for users. We focus on the precise modeling of zenith wet delay (ZWD) over a wide area with large altitude variations for improving PPP-AR. By exploiting the water vapor exponential vertical decrease, we develop a modified optimal fitting coefficients (MOFC) model based on the traditional optimal fitting coefficients (OFC) model. The proposed MOFC model provides a precision better than 1.5 cm under sparse inter-station distances over the Europe region, with a significant improvement of 70% for high-altitude stations compared to the OFC model. The MOFC model with different densities of reference stations is further evaluated in GPS and Galileo kinematic PPP-AR solutions. Compared to the PPP-AR solutions without tropospheric delay augmentation, the positioning precision of those with 100-km inter-station spacing MOFC and OFC is improved by 25.7% and 17.8%, respectively, and the corresponding time to first fix (TTFF) is improved by 36.9% and 33.0% in the high-altitude areas. On the other hand, the OFC model only slightly improves the TTFF and positioning accuracy when using the 200 km inter-station spacing modeling and even degrades the positioning for high-altitude stations, whereas using the MOFC model, the PPP-AR solutions always improve. Moreover, the positioning precision improvement of MOFC compared with OFC is about 22.1%, 21.7%, and 25.7% for the Galileo-only, GPS-only, and GPS + Galileo PPP-AR solutions, respectively

    A square root information filter for multi-GNSS real-time precise clock estimation

    Get PDF
    Real-time satellite orbit and clock estimations are the prerequisite for Global Navigation Satellite System (GNSS) real-time precise positioning services. To meet the high-rate update requirement of satellite clock corrections, the computational efficiency is a key factor and a challenge due to the rapid development of multi-GNSS constellations. The Square Root Information Filter (SRIF) is widely used in real-time GNSS data processing thanks to its high numerical stability and computational efficiency. In real-time clock estimation, the outlier detection and elimination are critical to guarantee the precision and stability of the product but could be time-consuming. In this study, we developed a new quality control procedure including the three standard steps: i.e., detection, identification, and adaption, for real-time data processing of huge GNSS networks. Effort is made to improve the computational efficiency by optimizing the algorithm to provide only the essential information required in the processing, so that it can be applied in real-time and high-rate estimation of satellite clocks. The processing procedure is implemented in the PANDA (Positioning and Navigation Data Analyst) software package and evaluated in the operational generation of real-time GNSS orbit and clock products. We demonstrated that the new algorithm can efficiently eliminate outliers, and a clock precision of 0.06 ns, 0.24 ns, 0.06 ns, and 0.11 ns can be achieved for the GPS, GLONASS, Galileo, and BDS-2 IGSO/MEO satellites, respectively. The computation time per epoch is about 2 to 3 s depending on the number of existing outliers. Overall, the algorithm can satisfy the IGS real-time clock estimation in terms of both the computational efficiency and product quality

    Improving the vertical modeling of tropospheric delay

    Get PDF
    Accurate tropospheric delays from Numerical Weather Models (NWM) are an important input to space geodetic techniques, especially for precise real-time Global Navigation Satellite Systems, which are indispensable to earthquake and tsunami early warning systems as well as weather forecasting. The NWM-based tropospheric delays are currently provided either site-specific with a limited spatial coverage, or on two-dimensional grids close to the Earth surface, which cannot be used for high altitudes. We introduce a new method of representing NWM-derived tropospheric zenith hydrostatic and wet delays. A large volume of NWM-derived data is parameterized with surface values and additional two or three coefficients for their vertical scaling to heights up to 14 km. A precision of 1–2 mm is achieved for reconstructing delays to the NWM-determined delays at any altitudes. The method can efficiently deliver NWM-derived tropospheric delays to a broader community of space geodetic techniques.DFG, 434617780, SFB 1464: Relativistische und quanten-basierte Geodäsie (TerraQ

    Validating HY-2A CMR precipitable water vapor using ground-based and shipborne GNSS observations

    Get PDF
    The calibration microwave radiometer (CMR) on board the Haiyang-2A (HY-2A) satellite provides wet tropospheric delay correction for altimetry data, which can also contribute to the understanding of climate system and weather processes. The ground-based global navigation satellite system (GNSS) provides precise precipitable water vapor (PWV) with high temporal resolution and could be used for calibration and monitoring of the CMR data, and shipborne GNSS provides accurate PWV over open oceans, which can be directly compared with uncontaminated CMR data. In this study, the HY-2A CMR water vapor product is validated using ground-based GNSS observations of 100 International GNSS Service (IGS) stations along the global coastline and 56 d shipborne GNSS observations over the Indian Ocean. The processing strategy for GNSS data and CMR data is discussed in detail. Special efforts were made in the quality control and reconstruction of contaminated CMR data. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV with 2.67 mm as the root mean square (rms) within 100 km. Geographically, the rms is 1.12 mm in the polar region and 2.78 mm elsewhere. The PWV agreement between HY-2A and shipborne GNSS shows a significant correlation with the distance between the ship and the satellite footprint, with an rms of 1.57 mm for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well

    Calibrating receiver-type-dependent wide-lane uncalibrated phase delay biases for PPP integer ambiguity resolution

    No full text
    Wide-lane (WL) uncalibrated phase delay (UPD) is usually derived from Melbourne–Wübbena (MW) linear combination and is a prerequisite in Global Navigation Satellite Systems (GNSS) precise point positioning (PPP) ambiguity resolution (AR). MW is a linear combination of pseudorange and phase, and the accuracy is limited by the larger pseudorange noise which is about one hundred times of the carrier phase noise. However, there exist inconsistent pseudorange biases which may have detrimental effect on the WL UPD estimation, and further degrade user-side ambiguity fixing. Currently, only the large part of pseudorange biases, e.g., the differential code bias (DCB), are available and corrected in PPP-AR, while the receiver-type-dependent biases have not yet been considered. Ignoring such kind of bias, which could be up to 20 cm, will cause the ambiguity fixing failure, or even worse, the incorrect ambiguity fixing. In this study, we demonstrate the receiver-type-dependent WL UPD biases and investigate their temporal and spatial stability, and further propose the method to precisely estimate these biases and apply the corrections to improve the user-side PPP-AR. Using a large data set of 1560 GNSS stations during a 30-day period, we demonstrate that the WL UPD deviations among different types of receivers can reach ± 0.3 cycles. It is also shown that such kind of deviations can be calibrated with a precision of about 0.03 cycles for all Global Positioning System (GPS) satellites. On the user side, ignoring the receiver-dependent UPD deviation can cause significant positioning error up to 10 cm. By correcting the deviations, the positioning performance can be improved by up to 50%, and the fixing rate can also be improved by 10%. This study demonstrates that for the precise and reliable PPP-AR, the receiver-dependent UPD deviations cannot be ignored and have to be handled.China Scholarship Council http://dx.doi.org/10.13039/501100004543Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ (4217)ftp://geodesy.noaa.gov/cors/rinex/ftp://ftp.gfz-potsdam.de/GNSS/products/mgex/ftp://ftp.aiub.unibe.ch/CODE

    Resource Allocation for Cognitive LEO Satellite Systems: Facilitating IoT Communications

    No full text
    Due to the characteristics of global coverage, on-demand access, and large capacity, the low earth orbit (LEO) satellite communication (SatCom) has become one promising technology to support the Internet-of-Things (IoT). However, due to the scarcity of satellite spectrum and the high cost of designing satellites, it is difficult to launch a dedicated satellite for IoT communications. To facilitate IoT communications over LEO SatCom, in this paper, we propose the cognitive LEO satellite system, where the IoT users act as the secondary user to access the legacy LEO satellites and cognitively use the spectrum of the legacy LEO users. Due to the flexibility of code division multiple access (CDMA) in multiple access and the wide use of CDMA in LEO SatCom, we apply CDMA to support cognitive satellite IoT communications. For the cognitive LEO satellite system, we are interested in the achievable rate analysis and resource allocation. Specifically, considering the randomness of spreading codes, we use the random matrix theory to analyze the asymptotic signal-to-interference-plus-noise ratios (SINRs) and accordingly obtain the achievable rates for both legacy and IoT systems. The power of the legacy and IoT transmissions at the receiver are jointly allocated to maximize the sum rate of the IoT transmission subject to the legacy satellite system performance requirement and the maximum received power constraints. We prove that the sum rate of the IoT users is quasi-concave over the satellite terminal receive power, based on which the optimal receive powers for these two systems are derived. Finally, the resource allocation scheme proposed in this paper has been verified by extensive simulations

    Calibrating receiver-type-dependent wide-lane uncalibrated phase delay biases for PPP integer ambiguity resolution

    No full text
    Wide-lane (WL) uncalibrated phase delay (UPD) is usually derived from Melbourne–Wübbena (MW) linear combination and is a prerequisite in Global Navigation Satellite Systems (GNSS) precise point positioning (PPP) ambiguity resolution (AR). MW is a linear combination of pseudorange and phase, and the accuracy is limited by the larger pseudorange noise which is about one hundred times of the carrier phase noise. However, there exist inconsistent pseudorange biases which may have detrimental effect on the WL UPD estimation, and further degrade user-side ambiguity fixing. Currently, only the large part of pseudorange biases, e.g., the differential code bias (DCB), are available and corrected in PPP-AR, while the receiver-type-dependent biases have not yet been considered. Ignoring such kind of bias, which could be up to 20 cm, will cause the ambiguity fixing failure, or even worse, the incorrect ambiguity fixing. In this study, we demonstrate the receiver-type-dependent WL UPD biases and investigate their temporal and spatial stability, and further propose the method to precisely estimate these biases and apply the corrections to improve the user-side PPP-AR. Using a large data set of 1560 GNSS stations during a 30-day period, we demonstrate that the WL UPD deviations among different types of receivers can reach ± 0.3 cycles. It is also shown that such kind of deviations can be calibrated with a precision of about 0.03 cycles for all Global Positioning System (GPS) satellites. On the user side, ignoring the receiver-dependent UPD deviation can cause significant positioning error up to 10 cm. By correcting the deviations, the positioning performance can be improved by up to 50%, and the fixing rate can also be improved by 10%. This study demonstrates that for the precise and reliable PPP-AR, the receiver-dependent UPD deviations cannot be ignored and have to be handled
    corecore