3,030 research outputs found

    Two-Dimensional Dirac Fermions Protected by Space-Time Inversion Symmetry in Black Phosphorus

    Get PDF
    We report the realization of novel symmetry-protected Dirac fermions in a surface-doped two-dimensional (2D) semiconductor, black phosphorus. The widely tunable band gap of black phosphorus by the surface Stark effect is employed to achieve a surprisingly large band inversion up to ~0.6 eV. High-resolution angle-resolved photoemission spectra directly reveal the pair creation of Dirac points and their moving along the axis of the glide-mirror symmetry. Unlike graphene, the Dirac point of black phosphorus is stable, as protected by spacetime inversion symmetry, even in the presence of spin-orbit coupling. Our results establish black phosphorus in the inverted regime as a simple model system of 2D symmetry-protected (topological) Dirac semimetals, offering an unprecedented opportunity for the discovery of 2D Weyl semimetals

    Inverse Problem for Color Doppler Ultrasound-Assisted Intracardiac Blood Flow Imaging

    Get PDF
    For the assessment of the left ventricle (LV), echocardiography has been widely used to visualize and quantify geometrical variations of LV. However, echocardiographic image itself is not sufficient to describe a swirling pattern which is a characteristic blood flow pattern inside LV without any treatment on the image. We propose a mathematical framework based on an inverse problem for three-dimensional (3D) LV blood flow reconstruction. The reconstruction model combines the incompressible Navier-Stokes equations with one-direction velocity component of the synthetic flow data (or color Doppler data) from the forward simulation (or measurement). Moreover, time-varying LV boundaries are extracted from the intensity data to determine boundary conditions of the reconstruction model. Forward simulations of intracardiac blood flow are performed using a fluid-structure interaction model in order to obtain synthetic flow data. The proposed model significantly reduces the local and global errors of the reconstructed flow fields. We demonstrate the feasibility and potential usefulness of the proposed reconstruction model in predicting dynamic swirling patterns inside the LV over a cardiac cycle

    Massive transfusion protocol: the reason it is necessary

    Get PDF
    Objective. The purpose of this study is to identify problems of emergency transfusion at the bedside and to determine need for massive transfusion protocol. Methods. We included patients who met the criteria for “trauma team activation” and were admitted to division of trauma. The amount of blood product transfused in each unit was investigated for balanced transfusion. We also investigated the compliance with assessment of blood consumption score. The correlation between the time elapsed from patient visit to first transfusion order and time elapsed from first transfusion order to transfusion start was analyzed. Finally, we investigated various factors which serve to influence the decision-making process regarding early transfusion order. Results. Ratio of packed Red blood cells (pRBC): Fresh frozen plasma (FFP) was well-balanced, but platelet transfusion done was much lower than pRBC and FFP in emergency room. The application of emergency blood release did not match the criteria of assessment of blood consumption (ABC) score. The time from the first transfusion order to the transfusion start was found to be constant irrespective of time from patient visit to first transfusion order. And, the time from the first transfusion order to transfusion start did not differ significantly among patients with early transfusion order and delayed transfusion order. Only systolic blood pressure of < 90 mmHg was identified as a major predictor for early transfusion order. Conclusion. Balanced transfusion is not easy and emergency transfusion could be delayed at the bedside. Integrated and systematic structures for massive transfusion protocol would be invaluable and indispensable

    Effect of the Ratio of Raw Material Components on the Physico-chemical Characteristics of Emulsion-type Pork Sausages

    Get PDF
    This study was conducted to investigate the effects of raw material ratio on the physicochemical characteristics of emulsion-type pork sausages. Experiment design was divided into 12 treatments, based on protein level (P), fat level (3P, 3.5P, and 4P), and water level (4P+10, 4P+15, 4P+20, and 4P+25). The pH and shear force values were significantly higher in T7 (3.5P fat and 4P+20 water) than those of other treatments. The lightness and redness were greatly reduced by increasing the quantity of water. The treatments containing 3P fat and 4P+20 water had the highest values of cohesiveness, springiness, gumminess, and chewiness. On the whole, when the protein (P) and fat (3P, 3.5P, 4P) levels were fixed, an increase over the appropriate moisture level deteriorated many physicochemical characteristics

    Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    Get PDF
    CONTEXT: Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. CASE PRESENTATION: Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine, dimethylformamide, dimethylacetamide, and methylenedianiline. The workers had been working in the high-vapor-generating area of the plant, and the findings of pathologic examination showed typical features of acute toxic hepatitis. DISCUSSION: Infectious hepatitis and drug-induced hepatitis were excluded by laboratory findings, as well as the clinical course of hepatitis. All cases of toxic hepatitis in this plant developed after the change of the disposal process to thermochemical reaction–type treatment using unslaked lime reacted with industrial wastes. During this chemical reaction, vapor containing several toxic materials was generated. Although we could not confirm the definitive causative chemical, we suspect that these cases of hepatitis were caused by one of the hepatotoxic agents or by a synergistic interaction among several of them. RELEVANCE TO CLINICAL OR PROFESSIONAL PRACTICE: In the industrial waste treatment process, the danger of developing toxic hepatitis should be kept in mind, because any subtle change of the treatment process can generate various toxic materials and threaten the workers’ health. A mixture of hepatotoxic chemicals can induce clinical manifestations that are quite different from those predicted by the toxic property of a single agent
    corecore