3,776 research outputs found

    DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances

    Full text link
    Recent advances in pre-trained language models have significantly improved neural response generation. However, existing methods usually view the dialogue context as a linear sequence of tokens and learn to generate the next word through token-level self-attention. Such token-level encoding hinders the exploration of discourse-level coherence among utterances. This paper presents DialogBERT, a novel conversational response generation model that enhances previous PLM-based dialogue models. DialogBERT employs a hierarchical Transformer architecture. To efficiently capture the discourse-level coherence among utterances, we propose two training objectives, including masked utterance regression and distributed utterance order ranking in analogy to the original BERT training. Experiments on three multi-turn conversation datasets show that our approach remarkably outperforms the baselines, such as BART and DialoGPT, in terms of quantitative evaluation. The human evaluation suggests that DialogBERT generates more coherent, informative, and human-like responses than the baselines with significant margins.Comment: Published as a conference paper at AAAI 202

    Single-filament Composite MgB2/SUS Ribbons by Powder-In-Tube Process

    Full text link
    We report the successful fabrication of single-filament composite MgB2/SUS ribbons, as an ultra-robust conductor type, employing the powder-in-tube (PIT) process, by swaging and cold rolling only. The remarkable transport critical current (Ic) of the non-sintered MgB2/SUS ribbon has observed, as an unexpected result. Transport critical currents Ic ~ 316 A at T = 4.2 K and Ic ~ 82 A at T = 20 K were observed at self-field, for the non-sintered composite MgB2/SUS ribbon. In addition, the persistent current density Jp values, that were estimated by Bean formula, were more than ~ 7  105 A/cm2 at T = 5 K, and ~ 1.2  105 A/cm2 at T = 30 K, for the sintered composite MgB2/SUS ribbon, at H = 0 G.Comment: 10 pages, 4 figure

    Continuous Decomposition of Granularity for Neural Paraphrase Generation

    Full text link
    While Transformers have had significant success in paragraph generation, they treat sentences as linear sequences of tokens and often neglect their hierarchical information. Prior work has shown that decomposing the levels of granularity~(e.g., word, phrase, or sentence) for input tokens has produced substantial improvements, suggesting the possibility of enhancing Transformers via more fine-grained modeling of granularity. In this work, we propose a continuous decomposition of granularity for neural paraphrase generation (C-DNPG). In order to efficiently incorporate granularity into sentence encoding, C-DNPG introduces a granularity-aware attention (GA-Attention) mechanism which extends the multi-head self-attention with: 1) a granularity head that automatically infers the hierarchical structure of a sentence by neurally estimating the granularity level of each input token; and 2) two novel attention masks, namely, granularity resonance and granularity scope, to efficiently encode granularity into attention. Experiments on two benchmarks, including Quora question pairs and Twitter URLs have shown that C-DNPG outperforms baseline models by a remarkable margin and achieves state-of-the-art results in terms of many metrics. Qualitative analysis reveals that C-DNPG indeed captures fine-grained levels of granularity with effectiveness.Comment: Accepted to be published in COLING 202

    Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endophytic fungi are little known for exogenous secretion of phytohormones and mitigation of salinity stress, which is a major limiting factor for agriculture production worldwide. Current study was designed to isolate phytohormone producing endophytic fungus from the roots of cucumber plant and identify its role in plant growth and stress tolerance under saline conditions.</p> <p>Results</p> <p>We isolated nine endophytic fungi from the roots of cucumber plant and screened their culture filtrates (CF) on gibberellins (GAs) deficient mutant rice cultivar <it>Waito-C </it>and normal GAs biosynthesis rice cultivar Dongjin-byeo. The CF of a fungal isolate CSH-6H significantly increased the growth of <it>Waito-C </it>and Dongjin-byeo seedlings as compared to control. Analysis of the CF showed presence of GAs (GA<sub>1</sub>, GA<sub>3</sub>, GA<sub>4</sub>, GA<sub>8</sub>, GA<sub>9</sub>, GA<sub>12</sub>, GA<sub>20 </sub>and GA<sub>24</sub>) and indole acetic acid. The endophyte CSH-6H was identified as a strain of <it>Paecilomyces formosus </it>LHL10 on the basis of phylogenetic analysis of ITS sequence similarity. Under salinity stress, <it>P. formosus </it>inoculation significantly enhanced cucumber shoot length and allied growth characteristics as compared to non-inoculated control plants. The hypha of <it>P. formosus </it>was also observed in the cortical and pericycle regions of the host-plant roots and was successfully re-isolated using PCR techniques. <it>P. formosus </it>association counteracted the adverse effects of salinity by accumulating proline and antioxidants and maintaining plant water potential. Thus the electrolytic leakage and membrane damage to the cucumber plants was reduced in the association of endophyte. Reduced content of stress responsive abscisic acid suggest lesser stress convened to endophyte-associated plants. On contrary, elevated endogenous GAs (GA<sub>3</sub>, GA<sub>4</sub>, GA<sub>12 </sub>and GA<sub>20</sub>) contents in endophyte-associated cucumber plants evidenced salinity stress modulation.</p> <p>Conclusion</p> <p>The results reveal that mutualistic interactions of phytohormones secreting endophytic fungi can ameliorate host plant growth and alleviate adverse effects of salt stress. Such fungal strain could be used for further field trials to improve agricultural productivity under saline conditions.</p

    Development of Genetic Markers for Triploid Verification of the Pacific Oyster,

    Get PDF
    The triploid Pacific oyster, which is produced by mating tetraploid and diploid oysters, is favored by the aquaculture industry because of its better flavor and firmer texture, particularly during the summer. However, tetraploid oyster production is not feasible in all oysters; the development of tetraploid oysters is ongoing in some oyster species. Thus, a method for ploidy verification is necessary for this endeavor, in addition to ploidy verification in aquaculture farms and in the natural environment. In this study, a method for ploidy verification of triploid and diploid oysters was developed using multiplex polymerase chain reaction (PCR) panels containing primers for molecular microsatellite markers. Two microsatellite multiplex PCR panels consisting of three markers each were developed using previously developed microsatellite markers that were optimized for performance. Both panels were able to verify the ploidy levels of 30 triploid oysters with 100% accuracy, illustrating the utility of microsatellite markers as a tool for verifying the ploidy of individual oysters
    corecore