13,888 research outputs found

    Collective effects in charge transfer within a hybrid organic-inorganic system

    Full text link
    A collective electron transfer (ET) process was discovered by studying the current noise in a field effect transistor with light-sensitive gate formed by nanocrystals linked by organic molecules to its surface. Fluctuations in the ET through the organic linker are reflected in the fluctuations of the transistor conductivity. The current noise has an avalanche character. Critical exponents obtained from the noise power spectra, avalanche distributions, and the dependence of the average avalanche size on avalanche duration are consistent with each other. A plausible model is proposed for this phenomenonComment: 15 pages 4 figures. Accepted for publication in Physical Review Letter

    Epitaxial growth and the magnetic properties of orthorhombic YTiO3 thin films

    Full text link
    High-quality YTiO3 thin films were grown on LaAlO3 (110) substrates at low oxygen pressures (<10-8 Torr) using pulsed laser deposition. The in-plane asymmetric atomic arrangements at the substrate surface allowed us to grow epitaxial YTiO3 thin films, which have an orthorhombic crystal structure with quite different a- and b-axes lattice constants. The YTiO3 film exhibited a clear ferromagnetic transition at 30 K with a saturation magnetization of about 0.7 uB/Ti. The magnetic easy axis was found to be along the [1-10] direction of the substrate, which differs from the single crystal easy axis direction, i.e., [001].Comment: 14 pages, 4 figure

    Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2

    Full text link
    We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure conditions and analyzed the microstructure and pinning properties. The lattice constants and the Laue pattern of the crystals from X-ray micro-diffraction showed the crystal symmetry of MgB2. A thorough crystallographic mapping within a single crystal showed that the edge and c-axis of hexagonal-disc shape exactly matched the (10-10) and the (0001) directions of the MgB2 phase. Thus, these well-shaped single crystals may be the best candidates for studying the direction dependences of the physical properties. The magnetization curve and the magnetic hysteresis for these single crystals showed the existence of a wide reversible region and weak pinning properties, which supported our single crystals being very clean.Comment: 5 pages, 3 figures. submitted to Phys. Rev.

    Effect of sintering temperature under high pressure in the uperconductivity for MgB2

    Full text link
    We report the effect of the sintering temperature on the superconductivity of MgB2 pellets prepared under a high pressure of 3 GPa. The superconducting properties of the non-heated MgB2 in this high pressure were poor. However, as the sintering temperature increased, the superconducting properties were vastly enhanced, which was shown by the narrow transition width for the resistivity and the low-field magnetizations. This shows that heat treatment under high pressure is essential to improve superconducting properties. These changes were found to be closely related to changes in the surface morphology observed using scanning electron microscopy.Comment: 3 Pages including 3 figure

    New heat treatment to prepare high quality polycrystalline and single crystal MgB2 in single process

    Full text link
    We report here on a new heat treatment to prepare both dense polycrystalline and single crystal MgB2 high quality samples in one single process. Resistivity measurements for polycrystalline part of the sample gives a residual resistivity ratio RRR=16.6 and a very low normal state resistivity rho(40K)= 0.28 microOhmcm. Both SEM and SQUID study on polycrystals reveal the high quality, dense character and well coupling of grain boundaries. On the other hand, the high quality single crystals have a unique shape that resembles the hexagonal crystal structure. SQUID measurements reveals very weak flux pinning character implying our single crystals to be very clean. In this study, we conclude that heat treatment is playing a major rule on the characteristics of both polycrystalline and single crystal MgB2. Samples are thoroughly characterized by x-ray, resistivity, dc SQUID and SEM

    Characterisation of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique

    Get PDF
    A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), called low-Z particle EPMA, was used to analyse individual aerosol particles collected in Incheon, Korea on 13–18 October 2008 (a typical haze episode occurred from 15 to 18 October). Overall 3600 individual particles in PM&lt;sub&gt;2.5-10&lt;/sub&gt; and PM&lt;sub&gt;1.0-2.5&lt;/sub&gt; fractions from 12 aerosol samples collected on haze and non-haze days were analysed. The analysed particles were classified, based on their X-ray spectral data together with their secondary electron images. The major particle types included organic carbon (OC), elemental carbon (EC), sea-salt, mineral dust (such as aluminosilicate, SiO&lt;sub&gt;2&lt;/sub&gt;, CaCO&lt;sub&gt;3&lt;/sub&gt;/CaMgCO&lt;sub&gt;3&lt;/sub&gt;, etc.), (NH&lt;sub&gt;4&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt;SO&lt;sub&gt;4&lt;/sub&gt;/NH&lt;sub&gt;4&lt;/sub&gt;HSO&lt;sub&gt;4&lt;/sub&gt;-containing, K-containing, Fe-rich and fly ash particles. Their relative number abundance results showed that OC particles were significantly increased while sea-salts and mineral dust particles were significantly decreased (especially in PM&lt;sub&gt;1.0-2.5&lt;/sub&gt; fraction) when haze occurred. For the other particle types (except Fe-rich particles in PM&lt;sub&gt;2.5-10&lt;/sub&gt; fraction), there were no significant differences in their relative abundances between haze and non-haze samples. On non-haze days, the nitrate-containing reacted sea-salt and mineral dust particles in PM&lt;sub&gt;1.0-2.5&lt;/sub&gt; fraction significantly outnumbered the sulfate-containing ones, whereas it was the reverse on haze days, implying that on haze days there were special sources or formation mechanisms for fine aerosol particles (≤2.5 μm in aerodynamic diameter). The emission of air pollutants from motor vehicles and stagnant meteorological conditions, such as low wind speed and high relative humidity, might be responsible for the elevated level of OC particles on haze days
    • …
    corecore