2,949 research outputs found

    Topoisomerase II is regulated by translationally controlled tumor protein for cell survival during organ growth in Drosophila.

    Get PDF
    Regulation of cell survival is critical for organ development. Translationally controlled tumor protein (TCTP) is a conserved protein family implicated in the control of cell survival during normal development and tumorigenesis. Previously, we have identified a human Topoisomerase II (TOP2) as a TCTP partner, but its role in vivo has been unknown. To determine the significance of this interaction, we examined their roles in developing Drosophila organs. Top2 RNAi in the wing disc leads to tissue reduction and caspase activation, indicating the essential role of Top2 for cell survival. Top2 RNAi in the eye disc also causes loss of eye and head tissues. Tctp RNAi enhances the phenotypes of Top2 RNAi. The depletion of Tctp reduces Top2 levels in the wing disc and vice versa. Wing size is reduced by Top2 overexpression, implying that proper regulation of Top2 level is important for normal organ development. The wing phenotype of Tctp RNAi is partially suppressed by Top2 overexpression. This study suggests that mutual regulation of Tctp and Top2 protein levels is critical for cell survival during organ development

    Analytical Modeling of Rheological Postbuckling Behavior of Wood-Based Composite Panels Under Cyclic Hygro-Loading

    Get PDF
    This study was conducted to develop analytical models to predict postbuckling behavior of woodbased composite panels under cyclic humidity conditions. Both the Rayleigh method and von Karman theory of nonlinear plate with imperfection were used to obtain a closed form solution to the hygrobuckling and postbuckling. In addition, mechano-sorptive creep effects were also taken into account for the derivation of analytical models. The closed-form solutions derived for both isotropic and orthotropic materials showed a good agreement with the experimental results in terms of the center deformation of hardboard, especially in the case of the edge movements. The unrecovery deformation was much greater at the first cycle and then decreased as the number of cyclic hygro-loading increased

    Gene silencing of <i>Sugar-dependent 1</i> (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in <i>Jatropha curcas</i>

    Get PDF
    BACKGROUND: Triacylglycerols (TAGs) are the most abundant form of storage oil in plants. They consist of three fatty acid chains (usually C16 or C18) covalently linked to glycerol. SDP1 is a specific lipase for the first step of TAG catabolism in Arabidopsis seeds. Arabidopsis mutants deficient in SDP1 accumulate high levels of oils, probably due to blockage in TAG degradation. We applied this knowledge from the model plant, Arabidopsis thaliana, to engineer increased seed oil content in the biodiesel plant Jatropha curcas using RNA interference (RNAi) technology. RESULTS: As Jatropha is a biodiesel crop, any significant increase in its seed oil content would be an important agronomic trait. Using A. thaliana as a model plant, we found that a deficiency of SDP1 led to higher TAG accumulation and a larger number of oil bodies in seeds compared with wild type (Columbia-0; Col-0). We cloned Jatropha JcSDP1, and verified its function by complementation of the Arabidopsis sdp1-5 mutant. Taking advantage of the observation with Arabidopsis, we used RNAi technology to generate JcSDP1 deficiency in transgenic Jatropha. We found that Jatropha JcSDP1-RNAi plants accumulated 13 to 30% higher total seed storage lipid, along with a 7% compensatory decrease in protein content, compared with control (CK; 35S:GFP) plants. Free fatty acid (FFA) content in seeds was reduced from 27% in control plants to 8.5% in JcSDP1-RNAi plants. CONCLUSION: Here, we showed that SDP1 deficiency enhances seed oil accumulation in Arabidopsis. Based on this result, we generated SDP1-deficient transgenic Jatropha plants using by RNAi technology with a native JcSDP1 promoter to silence endogenous JcSDP1 expression. Seeds of Jatropha JcSDP1-RNAi plants accumulated up to 30% higher total lipid and had reduced FFA content compared with control (CK; 35S:GFP) plants. Our strategy of improving an important agronomic trait of Jatropha can be extended to other oil crops to yield higher seed oil

    An Environmental Monitoring System for Managing Spatiotemporal Sensor Data over Sensor Networks

    Get PDF
    In a wireless sensor network, sensors collect data about natural phenomena and transmit them to a server in real-time. Many studies have been conducted focusing on the processing of continuous queries in an approximate form. However, this approach is difficult to apply to environmental applications which require the correct data to be stored. In this paper, we propose a weather monitoring system for handling and storing the sensor data stream in real-time in order to support continuous spatial and/or temporal queries. In our system, we exploit two time-based insertion methods to store the sensor data stream and reduce the number of managed tuples, without losing any of the raw data which are useful for queries, by using the sensors' temporal attributes. In addition, we offer a method for reducing the cost of the join operations used in processing spatiotemporal queries by filtering out a list of irrelevant sensors from query range before making a join operation. In the results of the performance evaluation, the number of tuples obtained from the data stream is reduced by about 30% in comparison to a naïve approach, thereby decreasing the query execution time

    Angiomyofibroblastoma-Like Tumor of the Scrotum

    Get PDF
    Various tumors can occur in the scrotum. Of them, angiomyofibroblastoma-like tumors are very rare mesenchymal tumors. Angiomyofibroblastoma-like tumors cannot be easily differentially diagnosed from other malignant tumors invading the male genital tract on the basis of clinical characteristics and imaging study. Therefore, surgical removal and a histopathologic diagnosis must also be performed

    The Enamel Phenotype in Homozygous Fam83h Truncation Mice

    Full text link
    BackgroundTruncation FAM83H mutations cause human autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI), an inherited disorder characterized by severe hardness defects in dental enamel. No enamel defects were observed in Fam83h null mice suggesting that Fam83h truncation mice would better replicate human mutations.MethodsWe generated and characterized a mouse model (Fam83hTr/Tr) expressing a truncated FAM83H protein (amino acids 1â 296), which recapitulated the ADHCAIâ causing human FAM83H p.Tyr297* mutation.ResultsDay 14 and 7â week Fam83hTr/Tr molars exhibited rough enamel surfaces and slender cusps resulting from hypoplastic enamel defects. The lateral third of the Fam83hTr/Tr incisor enamel layer was thinner, with surface roughness and altered enamel rod orientation, suggesting disturbed enamel matrix secretion. Regular electron density in mandibular incisor enamel indicated normal enamel maturation. Only mildly increased posteruption attrition of Fam83hTr/Tr molar enamel was observed at 7â weeks. Histologically, the Fam83hTr/Tr enamel organ, including ameloblasts, and enamel matrices at sequential stages of amelogenesis exhibited comparable morphology without overt abnormalities, except irregular and less evident ameloblast Tomes’ processes in specific areas.ConclusionsConsidering Fam83hâ /â mice showed no enamel phenotype, while Fam83hTr/Tr (p.Tyr297*) mice displayed obvious enamel malformations, we conclude that FAM83H truncation mutations causing ADHCAI in humans disturb amelogenesis through a neomorphic mechanism, rather than haploinsufficiency.FAM83H truncation mutations cause inherited enamel malformations in humans. Previously we showed that no enamel malformations are observed in Fam83h null mice. Here we demonstrate that truncation of FAM83H in mice causes enamel malformations. This figure shows how the lateral incisor enamel (on the left) is thinner in the Fam83h truncation mouse than it is in wild-type.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149571/1/mgg3724-sup-0004-DataS4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149571/2/mgg3724-sup-0003-DataS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149571/3/mgg3724-sup-0001-DataS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149571/4/mgg3724-sup-0002-DataS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149571/5/mgg3724_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149571/6/mgg3724.pd

    Genomic characterization of Nocardia seriolae strains isolated from diseased fish

    Get PDF
    Members of the genus Nocardia are widespread in diverse environments; a wide range of Nocardia species are known to cause nocardiosis in several animals, including cat, dog, fish, and humans. Of the pathogenic Nocardia species, N. seriolae is known to cause disease in cultured fish, resulting in major economic loss. We isolated two N. seriolae strains, CK‐14008 and EM15050, from diseased fish and sequenced their genomes using the PacBio sequencing platform. To identify their genomic features, we compared their genomes with those of other Nocardia species. Phylogenetic analysis showed that N. seriolae shares a common ancestor with a putative human pathogenic Nocardia species. Moreover, N. seriolae strains were phylogenetically divided into four clusters according to host fish families. Through genome comparison, we observed that the putative pathogenic Nocardia strains had additional genes for iron acquisition. Dozens of antibiotic resistance genes were detected in the genomes of N. seriolae strains; most of the antibiotics were involved in the inhibition of the biosynthesis of proteins or cell walls. Our results demonstrated the virulence features and antibiotic resistance of fish pathogenic N. seriolae strains at the genomic level. These results may be useful to develop strategies for the prevention of fish nocardiosis.
    corecore