217 research outputs found
Recommended from our members
Multilayer fabrication of unobtrusive poly(dimethylsiloxane) nanobrush for tunable cell adhesion
Precise modulation of polymer brush in its thickness and grafting density can cause unexpected cell behaviors and regulated bioactivities. Herein, a nanoscale poly(dimethylsiloxane) (PDMS) brush was employed to use as a controllable material for cell adhesion. Facile fabrication of ultrathin monolayer PDMS nanobrush on an underlying substrate facilitated regaining cell adhesion through long-range cell attractive forces such as the van der Waals forces. We showed that cell adhesion is diminished by increasing the number of nanobrush layers, causing a gradual decrease of the effectiveness of the long-range force. The result demonstrates that ultrathin PDMS nanobrush can either promote or inhibit cell adhesion, which is required for various biomedical fields such as tissue-engineering, anti-fouling coating, and implantable biomaterials and sensors
Myrrh Inhibits LPS-Induced Inflammatory Response and Protects from Cecal Ligation and Puncture-Induced Sepsis
Myrrh has been used as an antibacterial and anti-inflammatory agent. However, effect of myrrh on peritoneal macrophages and clinically relevant models of septic shock, such as cecal ligation and puncture (CLP), is not well understood. Here, we investigated the inhibitory effect and mechanism(s) of myrrh on inflammatory responses. Myrrh inhibited LPS-induced productions of inflammatory mediators such as nitric oxide, prostaglandin E2, and tumor necrosis factor-α but not of interleukin (IL)-1β and IL-6 in peritoneal macrophages. In addition, Myrrh inhibited LPS-induced activation of c-jun NH2-terminal kinase (JNK) but not of extracellular signal-regulated kinase (ERK), p38, and nuclear factor-κB. Administration of Myrrh reduced the CLP-induced mortality and bacterial counts and inhibited inflammatory mediators. Furthermore, administration of Myrrh attenuated CLP-induced liver damages, which were mainly evidenced by decreased infiltration of leukocytes and aspartate aminotransferase/alanine aminotransferase level. Taken together, these results provide the evidence for the anti-inflammatory and antibacterial potential of Myrrh in sepsis
Percutaneous Transhepatic Cholangioscopic Intervention in the Management of Complete Membranous Occlusion of Bilioenteric Anastomosis: Report of Two Cases
Postoperative biliary stricture is a relatively rare but serious complication of biliary surgery. Although Rouxen-Y hepaticojejunostomy or choledochojejunostomy are well-established and fundamental therapeutic approaches, their postoperative morbidity and mortality rates have been reported to be up to 33% and 13%, respectively. Recent studies suggest that percutaneous transhepatic intervention is an effective and less invasive therapeutic modality compared with traditional surgical treatment. Compared with fluoroscopic intervention, percutaneous with cholangioscopy may be more useful in biliary strictures, as it can provide visual information regarding the stricture site. We recently experienced two cases complete membranous occlusion of the bilioenteric anastomosis and successfully treated both patients using percutaneous transhepatic cholangioscopy
The Korean Organ Transplantation Registry (KOTRY): an overview and summary of the kidney-transplant cohort
Background As the need for a nationwide organ-transplant registry emerged, a prospective registry, the Korean Organ Transplantation Registry (KOTRY), was initiated in 2014. Here, we present baseline characteristics and outcomes of the kidney-transplant cohort for 2014 through 2019. Methods The KOTRY consists of five organ-transplant cohorts (kidney, liver, lung, heart, and pancreas). Data and samples were prospectively collected from transplant recipients and donors at baseline and follow-up visits; and epidemiological trends, allograft outcomes, and patient outcomes, such as posttransplant complications, comorbidities, and mortality, were analyzed. Results From 2014 to 2019, there were a total of 6,129 registered kidney transplants (64.8% with living donors and 35.2% with deceased donors) with a mean recipient age of 49.4 ± 11.5 years, and 59.7% were male. ABO-incompatible transplants totaled 17.4% of all transplants, and 15.0% of transplants were preemptive. The overall 1- and 5-year patient survival rates were 98.4% and 95.8%, respectively, and the 1- and 5-year graft survival rates were 97.1% and 90.5%, respectively. During a mean follow-up of 3.8 years, biopsy-proven acute rejection episodes occurred in 17.0% of cases. The mean age of donors was 47.3 ± 12.9 years, and 52.6% were male. Among living donors, the largest category of donors was spouses, while, among deceased donors, 31.2% were expanded-criteria donors. The mean serum creatinine concentrations of living donors were 0.78 ± 0.62 mg/dL and 1.09 ± 0.24 mg/dL at baseline and 1 year after kidney transplantation, respectively. Conclusion The KOTRY, a systematic Korean transplant cohort, can serve as a valuable epidemiological database of Korean kidney transplants
Electroless Gold Plating on Aluminum Patterned Chips for CMOS-based Sensor Applications
We presented an approach for the activation of aluminum Al alloy using palladium Pd and the subsequent gold Au electroless
plating ELP for complementary metal oxide semiconductor CMOS -based sensor applications. In this study, CMOS process
compatible Al patterned chips were used as substrates for easy incorporation with existing CMOS circuits. To improve the contact
resistance that arose from the Schottky barrier between the metal electrodes and the single-walled carbon nanotubes SWCNTs ,
electroless deposition of gold that has a higher work function than Al was adopted because the SWCNTs has p-type semiconductor
properties. Each step of the Au ELP procedure was studied under various bath temperatures, immersion times, and chemical
concentrations. Fine Pd particles were homogeneously distributed on the Al surface by the Pd activation process at room temperature.
Au ELP allowed selective deposition of the Au film on the activated Al surface only. The SWCNT networks formed on
the Au plated chip by a dip-coating method showed improved contact resistance and resistance variation between the Au electrode
and SWCNTs. We also tried SWCNT decoration with the Au particle using the upper Au ELP method, which was expected to be
applied in various areas including field-effect transistors and sensor devices.This work was supported by the Nano Systems Institute-National
Core Research Center NSI-NCRC program of NRF and the
TDPAF, Ministry for Agriculture, Forestry and Fisheries, Republic
of Korea
Preparation and In Vitro
Magnesium ion substituted biphasic calcium phosphate (Mg-BCP) bioceramic microscaffolds with spherical and porous morphology were successfully prepared using in situ coprecipitation and rotary spray drying atomization process for application of tissue engineering combined with human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). After 4 weeks of immersion in Hanks’ balanced salt solution (HBSS), Mg-BCP micro-scaffolds showed the enhanced biodegradation and bioactivity due to the substituted Mg2+ ion present in the BCP structure. In this study, it was observed that hAT-MSCs have clearly attached on the surface of Mg-BCP micro-scaffolds. In addition, Mg-BCP micro-scaffolds exhibited the improved biocompatibility and osteoconductivity via in vitro and in vivo biological tests with hAT-MSCs. Therefore, these bioceramic micro-scaffolds had potential to be used as hAT-MSCs microcarriers for biomedical applications
- …