32,646 research outputs found

    Product Integral Formalism and Non-Abelian Stokes Theorem

    Get PDF
    We make use of the properties of product integrals to obtain a surface product integral representation for the Wilson loop operator. The result can be interpreted as the non-abelian version of Stokes' theorem.Comment: Latex; condensed version of hep-th/9903221, to appear in Jour. Math. Phy

    Dynamic Creation and Annihilation of Metastable Vortex Phase as a Source of Excess Noise

    Full text link
    The large increase in voltage noise, commonly observed in the vicinity of the peak-effect in superconductors, is ascribed to a novel noise mechanism. A strongly pinned metastable disordered vortex phase, which is randomly generated at the edges and annealed into ordered phase in the bulk, causes large fluctuations in the integrated critical current of the sample. The excess noise due to this dynamic admixture of two distinct phases is found to display pronounced reentrant behavior. In the Corbino geometry the injection of the metastable phase is prevented and, accordingly, the excess noise disappearsComment: 5 pages 3 figures. Accepted for publication in Europhysics letter

    Bias Dependent 1/f Conductivity Fluctuations in Low-Doped La1x_{1-x}Cax_{x}MnO3_3 Manganite Single Crystals

    Full text link
    Low frequency noise in current biased La0.82_{0.82}Ca0.18_{0.18}MnO3_{3} single crystals has been investigated in a wide temperature range from 79 K to 290 K. Despite pronounced changes in magnetic properties and dissipation mechanisms of the sample with changing temperature, the noise spectra were found to be always of the 1/f type and their intensity (except the lowest temperature studied) scaled as a square of the bias. At liquid nitrogen temperatures and under bias exceeding some threshold value, the behavior of the noise deviates from the quasi-equilibrium modulation noise and starts to depend in a non monotonic way on bias. It has been verified that the observed noise obeys Dutta and Horn model of 1/f noise in solids. The appearance of nonequilibrium 1/f noise and its dependence on bias have been associated with changes in the distribution of activation energies in the underlying energy landscape. These changes have been correlated with bias induced changes in the intrinsic tunneling mechanism dominating dissipation in La0.82_{0.82}Ca0.18_{0.18}MnO3_{3} at low temperatures.Comment: Accepted for publication in the Journal of Applied Physic

    Transient analysis of spectrally asymmetric magnetic photonic crystals with ferromagnetic losses

    Get PDF
    We analyze transient electromagnetic pulse propagation in spectrally asymmetric magnetic photonic crystals (MPCs) with ferromagnetic losses. MPCs are dispersion-engineered materials consisting of a periodic arrangement of misaligned anisotropic dielectric and ferromagnetic layers that exhibit a stationary inflection point in the (asymmetric) dispersion diagram and unidirectional frozen modes. The analysis is performed via a late-time stable finite-difference time-domain method (FDTD) implemented with perfectly matched layer (PML) absorbing boundary conditions, and extended to handle (simultaneously) dispersive and anisotropic media. The proposed PML-FDTD algorithm is based on a D-H and B-E combined field approach that naturally decouples the FDTD update into two steps, one involving the (anisotropic and dispersive) constitutive material tensors and the other involving Maxwell’s equations in a complex coordinate space (to incorporate the PML). For ferromagnetic layers, a fully dispersive modeling of the permeability tensor is implemented to include magnetic losses in a consistent fashion. The numerical results illustrate some striking properties of MPCs, such as wave slowdown (frozen modes), amplitude increase (pulse compression), and unidirectional characteristics. The numerical model is also used to investigate the sensitivity of the MPC response against excitation (frequency and bandwidth), material (ferromagnetic losses), and geometric (layer misalignment and thickness) parameter variations

    Nonequilibrium 1/f Noise in Low-doped Manganite Single Crystals

    Full text link
    1/f noise in current biased La0.82Ca0.18MnO3 crystals has been investigated. The temperature dependence of the noise follows the resistivity changes with temperature suggesting that resistivity fluctuations constitute a fixed fraction of the total resistivity, independently of the dissipation mechanism and magnetic state of the system. The noise scales as a square of the current as expected for equilibrium resistivity fluctuations. However, at 77 K at bias exceeding some threshold, the noise intensity starts to decrease with increasing bias. The appearance of nonequilibrium noise is interpreted in terms of bias dependent multi-step indirect tunneling.Comment: 4pages, 3figures,APL accepte

    Scaling of the superfluid density in high-temperature superconductors

    Full text link
    A scaling relation \rho_s \simeq 35\sigma_{dc}T_c has been observed in the copper-oxide superconductors, where \rho_s is the strength of the superconducting condensate, T_c is the critical temperature, and \sigma_{dc} is the normal-state dc conductivity close to T_c. This scaling relation is examined within the context of a clean and dirty-limit BCS superconductor. These limits are well established for an isotropic BCS gap 2\Delta and a normal-state scattering rate 1/\tau; in the clean limit 1/\tau \ll 2\Delta, and in the dirty limit 1/\tau > 2\Delta. The dirty limit may also be defined operationally as the regime where \rho_s varies with 1/\tau. It is shown that the scaling relation \rho_s \propto \sigma_{dc}T_c is the hallmark of a BCS system in the dirty-limit. While the gap in the copper-oxide superconductors is considered to be d-wave with nodes and a gap maximum \Delta_0, if 1/\tau > 2\Delta_0 then the dirty-limit case is preserved. The scaling relation implies that the copper-oxide superconductors are likely to be in the dirty limit, and that as a result the energy scale associated with the formation of the condensate is scaling linearly with T_c. The a-b planes and the c axis also follow the same scaling relation. It is observed that the scaling behavior for the dirty limit and the Josephson effect (assuming a BCS formalism) are essentially identical, suggesting that in some regime these two effects may be viewed as equivalent. This raises the possibility that electronic inhomogeneities in the copper-oxygen planes may play an important role in the nature of the superconductivity in the copper-oxide materials.Comment: 8 pages with 5 figures and 1 tabl

    Optical conductivity in the normal state fullerene superconductors

    Get PDF
    We calculate the optical conductivity, σ(ω)\sigma(\omega), in the normal state fullerene superconductors by self-consistently including the impurity scatterings, the electron-phonon and electron-electron Coulomb interactions. The finite bandwidth of the fullerenes is explicitely considered, and the vertex corection is included aa lala Nambu in calculating the renormalized Green's function. σ(ω)\sigma(\omega) is obtained by calculating the current-current correlation function with the renormalized Green's function in the Matsubara frequency and then performing analytic continuation to the real frequency at finite temperature. The Drude weight in σ(ω)\sigma(\omega) is strongly suppressed due to the interactions and transfered to the mid-infrared region around and above 0.06 eV which is somewhat less pronounced and much broader compared with the expermental observation by DeGiorgi etet alal.Comment: 6 pages, 4 figures. To be published in Physical Review B, July 1

    Sub-wavelength focusing of high intensities in microfibre tips

    No full text
    Sub-wavelength efficient intensity confinement has been demonstrated in nanostructured optical microfibre tips. Focus Ion Beam (FIB) milling was used to nanostructure gold-coated optical microfibre tips and form apertures at the apex. Simulations were carried out to optimize the device design. Enhanced transmission efficiency (higher than 10-2) was achieved in spot sizes of ~λ/10. Nanostructured microfibre tips have the potential for a number of applications including optical recording, photolithography and scanning near-field optical microscopy (SNOM)

    Spin/Orbital Pattern-Dependent Polaron Absorption in Nd(1-x)Sr(x)MnO3

    Full text link
    We investigated optical properties of Nd(1-x)Sr(x)MnO3 (x= 0.40, 0.50, 0.55, and 0.65) single crystals. In the spin/orbital disordered state, their conductivity spectra look quite similar, and the strength of the mid-infrared absorption peak is proportional to x(1-x) consistent with the polaron picture. As temperature lowers, the Nd(1-x)Sr(x)MnO3 samples enter into various spin/orbital ordered states, whose optical responses are quite different. These optical responses can be explained by the spin/orbital ordering pattern-dependent polaron hopping.Comment: 3 figures (gzipped
    corecore