16,656 research outputs found
Absolute differential cross sections for electron-impact excitation of CO near threshold: II. The Rydberg states of CO
Absolute differential cross sections for electron-impact excitation of Rydberg states of CO have been measured from threshold to 3.7 eV above threshold and for scattering angles between 20° and 140°. Measured excitation functions for the b 3Σ+, B 1Σ+ and E 1π states are compared with cross sections calculated by the Schwinger multichannel method. The behaviour of the excitation functions for these states and for the j 3Σ+ and C 1Σ+ states is analysed in terms of negative-ion states. One of these resonances has not been previously reported
Epitaxial growth and the magnetic properties of orthorhombic YTiO3 thin films
High-quality YTiO3 thin films were grown on LaAlO3 (110) substrates at low
oxygen pressures (<10-8 Torr) using pulsed laser deposition. The in-plane
asymmetric atomic arrangements at the substrate surface allowed us to grow
epitaxial YTiO3 thin films, which have an orthorhombic crystal structure with
quite different a- and b-axes lattice constants. The YTiO3 film exhibited a
clear ferromagnetic transition at 30 K with a saturation magnetization of about
0.7 uB/Ti. The magnetic easy axis was found to be along the [1-10] direction of
the substrate, which differs from the single crystal easy axis direction, i.e.,
[001].Comment: 14 pages, 4 figure
Directional interacting whispering gallery modes in coupled dielectric microdisks
We study the optical interaction in a coupled dielectric microdisks by
investigating the splitting of resonance positions of interacting whispering
gallery modes (WGMs) and their pattern change, depending on the distance
between the microdisks. It is shown that the interaction between the WGMs with
odd parity about y-axis becomes appreciable at a distance less than a
wavelength and causes directional emissions of the resulting interacting WGMs.
The directionality of the interacting WGMs can be understood in terms of an
effective boundary deformation in ray dynamical analysis. We also discuss about
the oscillation of the splitting when the distance is greater than a
wavelength.Comment: 7 pages, 10 figure
Microstructure and pinning properties of hexagonal-disc shaped single crystalline MgB2
We synthesized hexagonal-disc-shaped MgB2 single crystals under high-pressure
conditions and analyzed the microstructure and pinning properties. The lattice
constants and the Laue pattern of the crystals from X-ray micro-diffraction
showed the crystal symmetry of MgB2. A thorough crystallographic mapping within
a single crystal showed that the edge and c-axis of hexagonal-disc shape
exactly matched the (10-10) and the (0001) directions of the MgB2 phase. Thus,
these well-shaped single crystals may be the best candidates for studying the
direction dependences of the physical properties. The magnetization curve and
the magnetic hysteresis for these single crystals showed the existence of a
wide reversible region and weak pinning properties, which supported our single
crystals being very clean.Comment: 5 pages, 3 figures. submitted to Phys. Rev.
Fluctuation Study of the Specific Heat of MgB2
The specific heat of polycrystalline MgB has been measured with
high resolution ac calorimetry from 5 to 45 K at constant magnetic fields. The
excess specific heat above T is discussed in terms of Gaussian
fluctuations and suggests that MgB is a bulk superconductor with
Ginzburg-Landau coherence length \AA . The transition-width
broadening in field is treated in terms of lowest-Landau-level (LLL)
fluctuations. That analysis requires that \AA . The underestimate
of the coherence length in field, along with deviations from 3D LLL
predictions, suggest that there is an influence from the anisotropy of B
between the c-axis and the a-b plane.Comment: Phys. Rev. B 66, 134515 (2002
Characterisation of individual aerosol particles collected during a haze episode in Incheon, Korea using the quantitative ED-EPMA technique
A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), called low-Z particle EPMA, was used to analyse individual aerosol particles collected in Incheon, Korea on 13–18 October 2008 (a typical haze episode occurred from 15 to 18 October). Overall 3600 individual particles in PM<sub>2.5-10</sub> and PM<sub>1.0-2.5</sub> fractions from 12 aerosol samples collected on haze and non-haze days were analysed. The analysed particles were classified, based on their X-ray spectral data together with their secondary electron images. The major particle types included organic carbon (OC), elemental carbon (EC), sea-salt, mineral dust (such as aluminosilicate, SiO<sub>2</sub>, CaCO<sub>3</sub>/CaMgCO<sub>3</sub>, etc.), (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>/NH<sub>4</sub>HSO<sub>4</sub>-containing, K-containing, Fe-rich and fly ash particles. Their relative number abundance results showed that OC particles were significantly increased while sea-salts and mineral dust particles were significantly decreased (especially in PM<sub>1.0-2.5</sub> fraction) when haze occurred. For the other particle types (except Fe-rich particles in PM<sub>2.5-10</sub> fraction), there were no significant differences in their relative abundances between haze and non-haze samples. On non-haze days, the nitrate-containing reacted sea-salt and mineral dust particles in PM<sub>1.0-2.5</sub> fraction significantly outnumbered the sulfate-containing ones, whereas it was the reverse on haze days, implying that on haze days there were special sources or formation mechanisms for fine aerosol particles (≤2.5 μm in aerodynamic diameter). The emission of air pollutants from motor vehicles and stagnant meteorological conditions, such as low wind speed and high relative humidity, might be responsible for the elevated level of OC particles on haze days
- …