2 research outputs found

    Hole Injection Enhancements of a CoPc and CoPc:NPB Mixed Layer in Organic Light-Emitting Devices

    No full text
    The hole injection enhancement in organic light-emitting devices with the insertion of a cobalt phthalocyanine (CoPc) hole injection layer (HIL) between the indium tin oxide (ITO) anode and the <i>N</i>,<i>N</i>′-bis­(1-naphthyl)-<i>N</i>,<i>N</i>′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) hole transport layer (HTL) was demonstrated through current density–voltage–luminance measurements, in situ photoelectron spectroscopy experiments, and theoretical calculations. The CoPc HIL significantly reduces the hole injection barrier (HIB) and thus serves as an efficient HIL like the conventional copper phthalocyanine HIL. This commonality originates from their similar configurations of the highest occupied molecular orbital (HOMO), which consists of conducting macrocycle isoindole ligands, not related to the central metal. However, as the CoPc:NPB mixed HIL is inserted, the hole injection enhancements are inferior to that of a single CoPc HIL. This is due to the electron transfer from NPB to CoPc, which pulls the HOMO level of the mixed HIL down to the deeper position. The reduced hole injection with the mixed layer implies directly that the HIB between ITO and HIL dominates device performance as the so-called ladder effect of HILs

    Interface Formation Between ZnO Nanorod Arrays and Polymers (PCBM and P3HT) for Organic Solar Cells

    No full text
    We investigated the interface formation between a ZnO nanorod array and active layers of [6,6]-phenyl-C<sub>61</sub>-butyric acid methyl ester (PCBM) and poly­[3-hexylthiophene] (P3HT) in organic solar cells (OSC). We measured the interfacial electronic structures with in situ photoemission spectroscopy combined with an electrospray deposition system. Different interfacial electronic structures were observed on the ZnO nanorod array, which were compared to those of a two-dimensional ZnO film. Comparing the interfacial orbital line-ups of the active layers on the nanorod array and the film, PCBM shows Fermi level pinning behavior, but P3HT does not. These induce nearly identical orbital line-ups at the interfaces of PCBM/film and PCBM/nanorod but different line-ups at the interfaces of P3HT/film and P3HT/nanorod. These differences are understood with the integer charge transfer model with the different thresholds of Fermi level pinning of PCBM and P3HT. These results give insight into the design not only of OSCs but also of any organic electronic devices with nanostructures: changes in electronic structure due to the nanostructure formation should be considered thoroughly
    corecore