1,707 research outputs found

    Fine tuning of Rac1 and RhoA alters cuspal shapes by remolding the cellular geometry

    Get PDF
    published_or_final_versio

    Characterization of developmental defects in the forebrain resulting from hyperactivated mTOR signaling by integrative analysis of transcriptomic and proteomic data

    Get PDF
    Hyperactivated mTOR signaling in the developing brain has been implicated in multiple forms of pathology including tuberous sclerosis complex (TSC). To date, various phenotypic defects such as cortical lamination irregularity, subependymal nodule formation, dysmorphic astrocyte differentiation and dendritic malformation have been described for patients and animal models. However, downstream networks affected in the developing brain by hyperactivated mTOR signaling have yet to be characterized. Here, we present an integrated analysis of transcriptomes and proteomes generated from wild-type and Tsc1/Emx1-Cre forebrains. This led to comprehensive lists of genes and proteins whose expression levels were altered by hyperactivated mTOR signaling. Further incorporation of TSC patient data followed by functional enrichment and network analyses pointed to changes in molecular components and cellular processes associated with neuronal differentiation and morphogenesis as the key downstream events underlying developmental and morphological defects in TSC. Our results provide novel and fundamental molecular bases for understanding hyperactivated mTOR signaling-induced brain defects which can in turn facilitate identification of potential diagnostic markers and therapeutic targets for mTOR signaling-related neurological disorders. ? The Author(s) 2017.11Ysciescopu

    Enhancing Fundamental Robot-Assisted Surgical Proficiency by Using a Portable Virtual Simulator

    Get PDF
    Background. The development of a virtual reality (VR) training platform provides an affordable interface. The learning effect of VR and the capability of skill transfer from the VR environment to clinical tasks require more investigation. Methods. Here, 14 medical students performed 2 fundamental surgical tasksā€”bimanual carrying (BC) and peg transfer (PT)ā€”in actual and virtual environments. Participants in the VR group received VR training, whereas participants in the control group played a 3D game. The learning effect was examined by comparing kinematics between pretraining and posttraining in the da Vinci Surgical System. Differences between VR and playing the 3D game were also examined. Results. Those who were trained with the VR simulator had significantly better performance in both actual PT (P = .002) and BC (P \u3c .001) tasks. The time to task completion and the total distance traveled were significantly decreased in both surgical tasks in the VR group compared with the 3D game group. However, playing the 3D game showed no significant enhancement of fundamental surgical skills in the actual PT task. The difference between pretraining and posttraining was significantly larger in the VR group than in the 3D game group in both the time to task completion (P = .002) and the total distance traveled (P = .027) for the actual PT task. Participants who played the 3D game seemed to perform even worse in posttraining. Conclusions. Training with the portable VR simulator improved robot-assisted surgical skill proficiency in comparison to playing a 3D game

    Rudder Gap Flow Control for Cavitation Suppression

    Full text link
    For the suppression of rudder cavitation, especially within and around the gap between the stationary and movable parts, flow control devices were developed. In the present study, both experimental and computational analyses of the flow control devices were carried out. The new rudder system is equipped with cam devices, which effectively close the gap between the stationary horn/pintle and movable flaps. Model scale experiments of surface pressure measurements, flow field visualization near the gap using PIV, and cavitation behavior observation were conducted in a cavitation tunnel. The experiments were simulated using a computational fluid dynamics tool and the results are compared for validation. It is confirmed that the flow control devices effectively suppresses the rudder gap cavitation and, at the same time, augments lifthttp://deepblue.lib.umich.edu/bitstream/2027.42/84266/1/CAV2009-final70.pd

    Differential expression of circulating microRNAs according to severity of colorectal neoplasia

    Get PDF
    There is a need to develop a colorectal cancer (CRC) screening test that is noninvasive, cost effective, and sensitive enough to detect preneoplastic lesions. This case-control study examined the feasibility of using circulating extracellular microRNAs (miRNAs) to differentiate a spectrum of colorectal neoplasia of various severity and hence for early detection of colorectal neoplasia. Archived serum samples of 10 normal controls and 31 cases, including 10 with nonadvanced adenoma, 10 with advanced adenoma, and 11 with CRC, were profiled for circulating miRNAs using next-generation sequencing. Multiple linear regression, adjusting for age, gender, and smoking status, compared controls and the 3 case groups for levels of 175 miRNAs that met stringent criteria for miRNA sequencing analysis. Of the 175 miRNAs, 106 miRNAs were downregulated according to severity of neoplasia and showed a relative decrease in the expression from controls to nonadvanced adenoma to advanced adenoma to CRC (Ptrend \u3c 0.05). Pairwise group comparisons showed that 39 and 80 miRNAs were differentially expressed in the advanced adenoma and CRC groups compared with the controls, respectively. Differences in miRNA levels between the nonadvanced adenoma group and controls were modest. Our study found that expression of many miRNAs in serum was inversely correlated with the severity of colorectal neoplasia, and differential miRNA profiles were apparent in preneoplastic cases with advanced lesions, suggesting circulating miRNAs could serve as potential biomarkers for CRC screening
    • ā€¦
    corecore