5,251 research outputs found

    Opportunistic Interference Mitigation Achieves Optimal Degrees-of-Freedom in Wireless Multi-cell Uplink Networks

    Full text link
    We introduce an opportunistic interference mitigation (OIM) protocol, where a user scheduling strategy is utilized in KK-cell uplink networks with time-invariant channel coefficients and base stations (BSs) having MM antennas. Each BS opportunistically selects a set of users who generate the minimum interference to the other BSs. Two OIM protocols are shown according to the number SS of simultaneously transmitting users per cell: opportunistic interference nulling (OIN) and opportunistic interference alignment (OIA). Then, their performance is analyzed in terms of degrees-of-freedom (DoFs). As our main result, it is shown that KMKM DoFs are achievable under the OIN protocol with MM selected users per cell, if the total number NN of users in a cell scales at least as SNR(K1)M\text{SNR}^{(K-1)M}. Similarly, it turns out that the OIA scheme with SS(<M<M) selected users achieves KSKS DoFs, if NN scales faster than SNR(K1)S\text{SNR}^{(K-1)S}. These results indicate that there exists a trade-off between the achievable DoFs and the minimum required NN. By deriving the corresponding upper bound on the DoFs, it is shown that the OIN scheme is DoF optimal. Finally, numerical evaluation, a two-step scheduling method, and the extension to multi-carrier scenarios are shown.Comment: 18 pages, 3 figures, Submitted to IEEE Transactions on Communication

    Reconfiguration of quantum states in PT\mathcal PT-symmetric quasi-one dimensional lattices

    Get PDF
    We demonstrate mesoscopic transport through quantum states in quasi-1D lattices maintaining the combination of parity and time-reversal symmetries by controlling energy gain and loss. We investigate the phase diagram of the non-Hermitian system where transitions take place between unbroken and broken PT\mathcal{PT}-symmetric phases via exceptional points. Quantum transport in the lattice is measured only in the unbroken phases in the energy band-but not in the broken phases. The broken phase allows for spontaneous symmetry-broken states where the cross-stitch lattice is separated into two identical single lattices corresponding to conditionally degenerate eigenstates. These degeneracies show a lift-up in the complex energy plane, caused by the non-Hermiticity with PT\mathcal{PT}-symmetry.Comment: 12 pages, 7 figure

    Antiresonance induced by symmetry-broken contacts in quasi-one-dimensional lattices

    Get PDF
    We report the effect of symmetry-broken contacts on quantum transport in quasi-one-dimensional lattices. In contrast to 1D chains, transport in quasi-one-dimensional lattices, which are made up of a finite number of 1D chain layers, is strongly influenced by contacts. Contact symmetry depends on whether the contacts maintain or break the parity symmetry between the layers. With balanced on-site potential, a flat band can be detected by asymmetric contacts, but not by symmetric contacts. In the case of asymmetric contacts with imbalanced on-site potential, transmission is suppressed at certain energies. We elucidate these energies of transmission suppression related to antiresonance using reduced lattice models and Feynman paths. These results provide a nondestructive measurement of flat band energy which it is difficult to detect.Comment: 8 pages, 5 figure

    Click-aware purchase prediction with push at the top

    Full text link
    Eliciting user preferences from purchase records for performing purchase prediction is challenging because negative feedback is not explicitly observed, and because treating all non-purchased items equally as negative feedback is unrealistic. Therefore, in this study, we present a framework that leverages the past click records of users to compensate for the missing user-item interactions of purchase records, i.e., non-purchased items. We begin by formulating various model assumptions, each one assuming a different order of user preferences among purchased, clicked-but-not-purchased, and non-clicked items, to study the usefulness of leveraging click records. We implement the model assumptions using the Bayesian personalized ranking model, which maximizes the area under the curve for bipartite ranking. However, we argue that using click records for bipartite ranking needs a meticulously designed model because of the relative unreliableness of click records compared with that of purchase records. Therefore, we ultimately propose a novel learning-to-rank method, called P3Stop, for performing purchase prediction. The proposed model is customized to be robust to relatively unreliable click records by particularly focusing on the accuracy of top-ranked items. Experimental results on two real-world e-commerce datasets demonstrate that P3STop considerably outperforms the state-of-the-art implicit-feedback-based recommendation methods, especially for top-ranked items.Comment: For the final published journal version, see https://doi.org/10.1016/j.ins.2020.02.06

    Flat-band localization and self-collimation of light in photonic crystals

    Get PDF
    We investigate the optical properties of a photonic crystal composed of a quasi-one-dimensional flat-band lattice array through finite-difference time-domain simulations. The photonic bands contain flat bands (FBs) at specific frequencies, which correspond to compact localized states as a consequence of destructive interference. The FBs are shown to be nondispersive along the ΓX\Gamma\rightarrow X line, but dispersive along the ΓY\Gamma\rightarrow Y line. The FB localization of light in a single direction only results in a self-collimation of light propagation throughout the photonic crystal at the FB frequency.Comment: 18 single-column pages, 7 figures including graphical to

    Can One Achieve Multiuser Diversity in Uplink Multi-Cell Networks?

    Full text link
    We introduce a distributed opportunistic scheduling (DOS) strategy, based on two pre-determined thresholds, for uplink KK-cell networks with time-invariant channel coefficients. Each base station (BS) opportunistically selects a mobile station (MS) who has a large signal strength of the desired channel link among a set of MSs generating a sufficiently small interference to other BSs. Then, performance on the achievable throughput scaling law is analyzed. As our main result, it is shown that the achievable sum-rate scales as Klog(SNRlogN)K\log(\text{SNR}\log N) in a high signal-to-noise ratio (SNR) regime, if the total number of users in a cell, NN, scales faster than SNRK11ϵ\text{SNR}^{\frac{K-1}{1-\epsilon}} for a constant ϵ(0,1)\epsilon\in(0,1). This result indicates that the proposed scheme achieves the multiuser diversity gain as well as the degrees-of-freedom gain even under multi-cell environments. Simulation results show that the DOS provides a better sum-rate throughput over conventional schemes.Comment: 11 pages, 3 figures, 2 tables, to appear in IEEE Transactions on Communication

    Emergent localized states at the interface of a twofold PT\mathcal{PT}-symmetric lattice

    Full text link
    We consider the role of non-triviality resulting from a non-Hermitian Hamiltonian that conserves twofold PT-symmetry assembled by interconnections between a PT-symmetric lattice and its time reversal partner. Twofold PT-symmetry in the lattice produces additional surface exceptional points that play the role of new critical points, along with the bulk exceptional point. We show that there are two distinct regimes possessing symmetry-protected localized states, of which localization lengths are robust against external gain and loss. The states are demonstrated by numerical calculation of a quasi-1D ladder lattice and a 2D bilayered square lattice.Comment: 10 pages, 7 figure

    Corporate Political Strategies and Return Predictability

    Get PDF
    We assess whether observable corporate political strategies can serve as channels of value relevant political information flow into stock prices and form the basis for profitable return predictability strategies. We document that returns of politically connected firms’ stocks lead those of their non-connected peers, suggesting that information shocks associated with new policies and other political developments become evident first in the stock prices of firms that pursue political strategies and then, with delay, in those of similar non-connected firms

    Policy Uncertainty and the Dual Role of Corporate Political Strategies

    Get PDF
    Firms use active political strategies not only to mitigate uncertainty emanating from legislative activity, but also to enhance their growth opportunities. We find that a firm\u27s systematic risk (beta) can be hedged away by employing various political strategies involving the presence of former politicians on corporate boards of directors, contributions to political campaigns, and corporate lobbying activities. The hedging effect is greater when firms operate in more uncertain industries. In addition, active political strategies are associated with greater firm heterogeneity and make real options more value relevant as potential drivers of competitive advantages in uncertain environments
    corecore