4,820 research outputs found

    Fusion of Color Doppler and Magnetic Resonance Images of the Heart

    Get PDF
    This study was designed to establish and analyze color Doppler and magnetic resonance fusion images of the heart, an approach for simultaneous testing of cardiac pathological alterations, performance, and hemodynamics. Ten volunteers were tested in this study. The echocardiographic images were produced by Philips IE33 system and the magnetic resonance images were generated from Philips 3.0-T system. The fusion application was implemented on MATLAB platform utilizing image processing technology. The fusion image was generated from the following steps: (1) color Doppler blood flow segmentation, (2) image registration of color Doppler and magnetic resonance imaging, and (3) image fusion of different image types. The fusion images of color Doppler blood flow and magnetic resonance images were implemented by MATLAB programming in our laboratory. Images and videos were displayed and saved as AVI and JPG. The present study shows that the method we have developed can be used to fuse color flow Doppler and magnetic resonance images of the heart. We believe that the method has the potential to: fill in information missing from the ultrasound or MRI alone, show structures outside the field of view of the ultrasound through MR imaging, and obtain complementary information through the fusion of the two imaging methods (structure from MRI and function from ultrasound)

    Brain metastases from hepatocellular carcinoma: clinical features and prognostic factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain metastases (BM) from hepatocellular carcinoma (HCC) are extremely rare and are associated with a poor prognosis. The aim of this study was to define clinical outcome and prognostic determinants in patients with BM from HCC.</p> <p>Methods</p> <p>Between January 1994 and December 2009, all patients with HCC and BM treated in Sun Yat-sen University Cancer Center were retrospectively reviewed. Univariate and multivariate survival analyses were performed to identify possible prognostic factors.</p> <p>Results</p> <p>Forty-one patients were diagnosed with BM from HCC, an incidence of 0.47%. The median age at diagnosis of BM was 48.5 years. Thirty-three patients (80.5%) developed extracranial metastases at diagnosis of BM, and 30 patients (73.2%) had hepatitis B. Intracranial hemorrhage occurred in 19 patients (46.3%). BM were treated primarily either with whole brain radiation therapy (WBRT; 5 patients), stereotactic radiosurgery (SRS; 7 patients), or surgical resection (6 patients). The cause of death was systemic disease in 17 patients and neurological disease in 23. Patients in a high RPA (recursive partitioning analysis) class, treated with conservatively and without lung metastases, tended to die from neurological disease. Median survival after the diagnosis of BM was 3 months (95% confidence interval: 2.2-3.8 months). In multivariate analysis, the presence of extracranial metastases, a low RPA class and aggressive treatment, were positively associated with improved survival.</p> <p>Conclusions</p> <p>BM from HCC is rare and associated with an extremely poor prognosis. However, patients with a low RPA class may benefit from aggressive treatment. The clinical implication of extracranial metastases in HCC patients with BM needs further assessment.</p

    Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Full text link
    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas -- particle, nuclear and atomic is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for EPJ

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore