873 research outputs found

    Bis[Ī¼-4-(1H-imidazol-3-ium-1-yl)benzoato-Īŗ2 O:Oā€²]bisĀ­[(methanol)trisĀ­(nitrato-Īŗ2 O,Oā€²)terbium(III)]

    Get PDF
    In the centrosymmetric dinuclear title complex, [Tb2(NO3)6(C10H8N2O2)2(CH3OH)2], the Tb atoms are bridged by the carboxylĀ­ate groups of the two 4-(1H-imidazol-3-ium-1-yl)benzoate (iba) ligands. The iba ligand adopts a zwitterionic form with a protonated imidazole group. The Tb atom adopts a distorted tricapped trigonalā€“prismatic coordination geometry and is coordinated by six O atoms of three chelating nitrate ions, one O atom of the methanol molĀ­ecule and two O atoms of two iba ligands. The intraĀ­molecular Tbā‹ÆTb separation is 5.1419ā€…(3)ā€…Ć…. Oā€”Hā‹ÆO and Nā€”Hā‹ÆO hydrogen bonds connect complex molĀ­ecules into a two-dimensional network

    Analysis of Building Energy Savings Potential for Metal Panel Curtain Wall Building by Reducing Thermal Bridges at Joints Between Panels

    Get PDF
    AbstractTo achieve national greenhouse gas reduction in the building sector, heating and cooling energy in buildings should be reduced. The government has strengthened regulations on insulation performance for building energy savings. However, the building envelope has various thermal bridges. In particular, a metal panel curtain wall comprises a number of thermal bridges at joints between the panels and the fixing units, thus degrading the overall thermal performance. To reduce building energy, it is necessary to reduce thermal bridges in building envelopes. This study aims to analyze the energy saving potential achieved by reducing thermal bridges. For this, the insulation performance and building energy needs of the existing and alternative metal panel curtain wall were evaluated. The alternative metal panel curtain wall that uses plastic molds at joints between panels and the thermally-broken brackets was suggested to reduce heat loss through thermal bridges. As results, the effective U-value of the alternative metal panel curtain wall was reduced by 72% compared with the existing metal panel curtain wall. In addition, annual heating energy needs of the alternative metal panel curtain wall building was reduced by 26%, and annual total energy needs was reduced by 6% because annual cooling energy needs of it slightly increased compared with the existing metal panel curtain wall. In conclusion, the alternative metal panel curtain wall considerably influenced the savings in building energy needs by reducing thermal bridges

    Characterization of Saccharomyces cerevisiae protein Ser/Thr phosphatase T1 and comparison to its mammalian homolog PP5

    Get PDF
    BACKGROUND: Protein Ser/Thr phosphatase 5 (PP5) and its Saccharomyces cerevisiae homolog protein phosphatase T1 (Ppt1p) each contain an N-terminal domain consisting of several tetratricopeptide repeats (TPRs) and a C-terminal catalytic domain that is related to the catalytic subunits of protein phosphatases 1 and 2A, and calcineurin. Analysis of yeast Ppt1p could provide important clues to the function of PP5 and its homologs, however it has not yet been characterized at the biochemical or cellular level. RESULTS: The specific activity of recombinant Ppt1p toward the artificial substrates (32)P-myelin basic protein (MBP) and (32)P-casein was similar to that of PP5. Dephosphorylation of (32)P-MBP, but not (32)P-casein, was stimulated by unsaturated fatty acids and by arachidoyl coenzyme A. Limited proteolysis of Ppt1p removed the TPR domain and abrogated lipid stimulation. The remaining catalytic fragment exhibited a two-fold increase in activity toward (32)P-MBP, but not (32)P-casein. Removal of the C terminus increased Ppt1p activity toward both substrates two fold, but did not prevent further stimulation of activity toward (32)P-MBP by lipid treatment. Ppt1p was localized throughout the cell including the nucleus. Levels of PPT1 mRNA and protein peaked in early log phase growth. CONCLUSIONS: Many characteristics of Ppt1p are similar to those of PP5, including stimulation of phosphatase activity with some substrates by lipids, and peak expression during periods of rapid cell growth. Unlike PP5, however, proteolytic removal of the TPR domain or C-terminal truncation only modestly increased its activity. In addition, C-terminal truncation did not prevent further activation by lipid. This suggests that these regions play only a minor role in controlling its activity compared to PP5. Ppt1p is present in both the nucleus and cytoplasm, indicating that it may function in multiple compartments. The observation that Ppt1p is most highly expressed during early log phase growth suggests that this enzyme is involved in cell growth or its expression is controlled by metabolic or nutritional signals

    Biological Effect of Gas Plasma Treatment on CO 2

    Get PDF
    Porous polycaprolactone (PCL) scaffolds were fabricated by using the CO2 gas foaming/salt leaching process and then PCL scaffolds surface was treated by oxygen or nitrogen gas plasma in order to enhance the cell adhesion, spreading, and proliferation. The PCL and NaCl were mixed in the ratios of 3ā€‰:ā€‰1. The supercritical CO2 gas foaming process was carried out by solubilizing CO2 within samples at 50Ā°C and 8ā€‰MPa for 6ā€‰hr and depressurization rate was 0.4ā€‰MPa/s. The oxygen or nitrogen plasma treated porous PCL scaffolds were prepared at discharge power 100ā€‰W and 10ā€‰mTorr for 60ā€‰s. The mean pore size of porous PCL scaffolds showed 427.89ā€‰Ī¼m. The gas plasma treated porous PCL scaffolds surface showed hydrophilic property and the enhanced adhesion and proliferation of MC3T3-E1 cells comparing to untreated porous PCL scaffolds. The PCL scaffolds produced from the gas foaming/salt leaching and plasma surface treatment are suitable for potential applications in bone tissue engineering

    Association of retroperitoneal fibrosis with malignancy and its outcomes

    Get PDF
    Introduction Retroperitoneal fibrosis (RPF) is characterized by a highly fibrotic retroperitoneal mass and encompasses the idiopathic form and secondary to malignancies. Because we have limited knowledge whether RPF is associated with malignancy, we aimed to investigate the relationship between RPF and malignancy and to compare the characteristics and prognosis of cancers among patients with RPF. Methods Medical records of 111 patients diagnosed as having RPF were reviewed and 38 cases of cancer, confirmed by biopsy, were identified. Standardized incidence ratios (SIRs) were calculated for cancers and stratified according to cancer type and RPF-cancer diagnosis interval. Cancer characteristics and outcomes were compared between RPF-cancer diagnosis intervals. Results The average age at RPF diagnosis was 59.2 Ā± 15.0 years, and 69.4% of the patients were male. The cancer SIRs in patients with RPF relative to age- and sex-matched individuals in the general population was 2.2 (1.6ā€“3.1). SIRs of renal pelvis cancer and multiple myeloma were significantly higher than in the general population. When stratified by RPF-cancer intervals, the SIR for cancer was 9.9 within 1 year of RPF diagnosis, while no significant increase in the SIR was found after 1 year from RPF diagnosis. Cancer stage was more advanced at the time of diagnosis in patients within a 1-year interval for RPF than those with cancer within a >5-year interval, with a correspondingly increased mortality in the former patients. Conclusions RPF was significantly associated with malignancy, particularly those diagnosed within 1 year of RPF diagnosis. Cancer stages at diagnosis were more advanced and the mortality rate was higher in patients within a 1-year interval between RPF and cancer diagnosis than in those with a >5-year interval between diagnoses.This work was supported by Biomedical Research Institute grant, Kyungpook National University Hospital (2017), and by the research fund of Rheumatology Research Foundation (RRF-2016-05). This work was partly supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number HI14C1277)

    Deep learning-based phenotype classification of three ark shells: Anadara kagoshimensis, Tegillarca granosa, and Anadara broughtonii

    Get PDF
    The rapid and accurate classification of aquatic products is crucial for ensuring food safety, production efficiency, and economic benefits. However, traditional manual methods for classifying ark shell species based on phenotype are time-consuming and inefficient, especially during peak seasons when the demand is high and labor is scarce. This study aimed to develop a deep learning model for the automated identification and classification of commercially important three ark shells (Tegillarca granosa, Anadara broughtonii, and Anadara kagoshimensis) from images. The ark shells were collected and identified using a polymerase chain reaction method developed in a previous study, and a total of 1,400 images were categorized into three species. Three convolutional neural network (CNN) models, Visual Geometry Group Network (VGGnet), Inception-Residual Network (ResNet), and SqueezeNet, were then applied to two different classification sets, Set-1 (four bivalve species) and Set-2 (three ark shell species). Our results showed that SqueezeNet demonstrated the highest accuracy during the training phase for both classification sets, whereas Inception-ResNet exhibited superior accuracy during the validation phase. Similar results were obtained after developing a third classification set (Set-3) to classify six categories by combining Set-1 and Set-2. Overall, the developed CNN-based classification model exhibited a performance comparable or superior to that presented in previous studies and can provide a theoretical basis for bivalve classification, thereby contributing to improved food safety, production efficiency, and economic benefits in the aquatic products industry

    Epigallocatechin-3-gallate protects toluene diisocyanate-induced airway inflammation in a murine model of asthma

    Get PDF
    AbstractEpigallocatechin-3-gallate (EGCG), a major form of tea catechin, has anti-allergic properties. To elucidate the anti-allergic mechanisms of EGCG, we investigated its regulation of matrix metalloproteinase (MMP-9) expression in toluene diisocyanate (TDI)-inhalation lung tissues as well as TNF-Ī± and Th2 cytokine (IL-5) production in BAL fluid. Compared with untreated asthmatic mice those administrated with EGCG had significantly reduced asthmatic reaction. Also, increased reactive oxygen species (ROS) generation by TDI inhalation was diminished by administration of EGCG in BAL fluid. These results suggest that EGCG regulates inflammatory cell migration possibly by suppressing MMP-9 production and ROS generation, and indicate that EGCG may be useful as an adjuvant therapy for bronchial asthma

    A case of dermatomyositis in a patient with central core disease: unusual association with autoimmunity and genetic muscle disease

    Get PDF
    Background Dermatomyositis is an inflammatory muscle disease caused by immune-mediated muscle injury, and central core disease (CCD) is a congenital myopathy associated with disturbed intracellular calcium homeostasis and excitation-contraction coupling. To date, CCD has not been reported to have autoantibodies or coexist with inflammatory myopathy. Case presentation Here, we described the case of a 25-year-old woman who had progressive proximal muscle weakness, myalgia, pruritic macular rash, skin ulcers, and calcinosis. Dermatomyositis was initially suspected based on the clinical symptoms accompanied by elevated muscle enzyme levels, electromyography abnormalities, and a positive antinuclear antibody test. However, the patients muscle biopsy revealed the characteristic findings of both dermatomyositis and CCD, suggesting that dermatomyositis occurred in this patient with previously asymptomatic CCD. The patient did not have any pathogenic gene mutations associated with congenital myopathy, including RYR1 and SEPN1 in targeted next-generation sequencing. She received high-dose glucocorticoid therapy and azathioprine with a significant improvement in muscle strength. Conclusions We present a case of rare coexistence of dermatomyositis and CCD. Clinicians should be aware that patients with CCD may have inflammatory myopathy that responds well to immunosuppressive therapy.This study was funded by a grant from the Ministry of Science, ICT, and Future Planning (NRF-2020M3E5E2037430 to Y-W.S.)

    Machine-learning-assisted analysis of transition metal dichalcogenide thin-film growth

    Full text link
    In situ reflective high-energy electron diffraction (RHEED) is widely used to monitor the surface crystalline state during thin-film growth by molecular beam epitaxy (MBE) and pulsed laser deposition. With the recent development of machine learning (ML), ML-assisted analysis of RHEED videos aids in interpreting the complete RHEED data of oxide thin films. The quantitative analysis of RHEED data allows us to characterize and categorize the growth modes step by step, and extract hidden knowledge of the epitaxial film growth process. In this study, we employed the ML-assisted RHEED analysis method to investigate the growth of 2D thin films of transition metal dichalcogenides (ReSe2) on graphene substrates by MBE. Principal component analysis (PCA) and K-means clustering were used to separate statistically important patterns and visualize the trend of pattern evolution without any notable loss of information. Using the modified PCA, we could monitor the diffraction intensity of solely the ReSe2 layers by filtering out the substrate contribution. These findings demonstrate that ML analysis can be successfully employed to examine and understand the film-growth dynamics of 2D materials. Further, the ML-based method can pave the way for the development of advanced real-time monitoring and autonomous material synthesis techniques.Comment: 21 pages, 4 figure
    • ā€¦
    corecore