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Abstract Epigallocatechin-3-gallate (EGCG), a major form of
tea catechin, has anti-allergic properties. To elucidate the anti-
allergic mechanisms of EGCG, we investigated its regulation
of matrix metalloproteinase (MMP-9) expression in toluene diis-
ocyanate (TDI)-inhalation lung tissues as well as TNF-a and
Th2 cytokine (IL-5) production in BAL fluid. Compared with
untreated asthmatic mice those administrated with EGCG had
significantly reduced asthmatic reaction. Also, increased reactive
oxygen species (ROS) generation by TDI inhalation was dimin-
ished by administration of EGCG in BAL fluid. These results
suggest that EGCG regulates inflammatory cell migration possi-
bly by suppressing MMP-9 production and ROS generation, and
indicate that EGCG may be useful as an adjuvant therapy for
bronchial asthma.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Asthma is a chronic inflammatory lung disease characterized

by airway hyper-responsiveness (AHR) to allergens, airway

edema, and increased mucus secretion. A propensity to allergic

responses, atopy, are associated with the development of asth-

ma [1]. Oxidative stress is caused by a large variety of free rad-

icals known as reactive oxygen species (ROS). Much evidence

has suggested that ROS plays an essential role in the pathogen-

esis of airway inflammation [2–4]. The inflammatory cells re-

cruited to the asthmatic airways are able to produce ROS.

Evidence of an increase in oxidative stress in asthma is also
Abbreviations: EGCG, epigallocatechin-3-gallate; TDI, toluene diiso-
cyanate; ROS, reactive oxygen species; MMP-9, matrix metallopro-
teinase; AHR, airway hyper-responsiveness
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provided by the finding of defective endogenous antioxidant

capacity in asthmatic patients [5]. For these reasons, antioxi-

dant treatment of asthma has long been a promising subject

of therapeutic strategy.

Toluene diisocyanate (TDI)-induced asthma is characterized

by AHR and inflammation of the airway [6]. This inflamma-

tion is associated with the infiltration of eosinophils, neutro-

phils, and lymphocytes into the bronchial lumen and lung

tissues [6,7]. These cellular infiltrates release various chemical

mediators, which can cause AHR [8–10]. Recruitment of these

inflammatory cells from the blood to the site of inflammation

is regarded as a critical event in the development and prolon-

gation of airway inflammation. Inflammatory cells have to

cross the basement membrane and move through connective

tissue until they finally reach inflammatory sites, and require

the involvement of adhesion molecules, cytokines, chemokine

and enzymes including matrix metalloproteinases (MMPs) in

this journey. MMPs are a family of zinc-dependent and cal-

cium-dependent endopeptidases capable of proteolytically

degrading many of the components of the extracellular matrix

[11]. MMPs are produced not only by structural cells [12,13],

but also by inflammatory cells [14–17]. They are secreted as la-

tent forms followed by proteolytic processing to active forms

[11]. Of the MMP family, MMP-2 (gelatinase A, 72-kDa gela-

tinase) and MMP-9 (gelatinase B, 92-kDa gelatinase) are

MMPs that share similar domain structures and in vitro ma-

trix substrate specificities [18], and appear to induce the migra-

tion of eosinophils, lymphocytes, neutrophils, and dendritic

cells [19,20].

Tea (Camellia sinensis L.) is one of the most widely con-

sumed beverages in the world, and is known to contain various

beneficial constituents such as epigallocatechin-3-gallate

(EGCG). It has been demonstrated that EGCG exhibits vari-

ous biological and pharmacological properties that have been

reported to act in several antioxidative [21,22] and anticarcino-

genic ways [23,24]. EGCG, which is the major catechin in tea

leaves, apparently has the most essential role in these actions.

Interestingly, EGCG and the O-methylated derivative of

EGCG (EGCG 0 03Me) have been shown to inhibit type I al-

lergy [25]. In addition, many inflammatory proteins expressed

in asthmatic airways are regulated by NF-jB, including the

TNF-a [26,27], all of which are closely involved in the patho-

genesis of asthma. Recently, we have reported that EGCG
blished by Elsevier B.V. All rights reserved.
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suppresses the LPS-induced phenotypic and functional matu-

ration of murine dendritic cells through inhibition of mito-

gen-activated protein kinases and NF-jB [28]. It has also

been reported that EGCG has an inhibitory effect on the gela-

tinolytic activity of MMP-2 [29]. In the present study, we

investigated whether EGCG has an inhibitory effect against

TDI-induced asthma in mice.
2. Materials and methods

2.1. Animals and experimental protocols
Female BALB/c mice, 6–8 weeks of age and free of murine specific

pathogens, were obtained from the Orient (Seoul, Korea). All of the
experimental animals used in this study were under a protocol approved
by the Institutional Animal Care and Use Committee of the Pusan Na-
tional University College of Medicine. Mice were sensitized twice by 2
courses of intranasal administration of 3% TDI dissolved in ethyl ace-
tate/olive oil (1:4) once per day for 5 consecutive days with a 3-week
interval, as previously described [24,25]. Seven days later, the mice were
challenged through the airways with 1% TDI dissolved in ethyl acetate/
olive oil (1:4) by ultrasonic nebulization (NE-U12, Omron, Tokyo, Ja-
pan) (Fig. 1). To establish a control, mice were sensitized and chal-
lenged with the use of the same protocol but only with the solvent,
ethyl acetate/olive oil (1:4). Bronchoalveolar lavage (BAL) was per-
formed at 2 days after the TDI-challenge. After euthanasia with sodium
pentobarbital (100 mg/kg body weight), pre-warmed 0.9% NaCl solu-
tion (500 ll) was slowly infused into the lungs and withdrawn. The total
cell numbers were counted with a hemacytometer. Smears of BAL cells
prepared with Cytospin II (Shandon, Runcorn, UK) were stained with
Diff-Quik solution (Dade Diagnostics of P.R. Inc., Aguada, PR) for
differential cell counting. Two independent, blinded investigators
counted the cells, using a microscope. Approximately 200 cells were
counted in each of four different random locations.

2.2. Administration of EGCG
Mice were fed ad libitum 0.3% EGCG (TEAVIGO�, Roche Vita-

mins Ltd., Basel) in their drinking water with a light-protected bottle
from last sensitization to 2 days after first challenge.

2.3. Measurement of intracellular ROS
ROS were measured by a method described previously with modifi-

cation [30–32]. BAL fluids were washed with phosphate-buffered saline
(PBS). To measure intracellular ROS, cells were incubated for 10 min
at room temperature with PBS containing 3.3 lM 2 0,7 0-dichlorofluo-
rescein diacetate (DCFDA) (Molecular Probes, Eugene, OR), to label
intracellular ROS. The cells were then immediately observed fluores-
cence-activated cell sorting (FACS) analysis (Beckton Dickinson,
San Jose, CA).

2.4. Cytokine measurements
Levels of TNF-a and IL-5 (Endogen Inc., Woburn, MA) in BAL flu-

ids were measured with a specific mouse (m) TNF-a and IL-5 ELISA
kit. The detection limit of the TNF-a and IL-5 assay were 5 pg/ml,
and the assay is said by the manufacturer to be specific for TNF-a
and IL-5.
Fig. 1. Schematic diagram of the experimental protocol. Mice were sensitized
week interval. Seven days later, the mice were challenged through the airway
To establish a control, mice were sensitized and challenged with the use of th
Mice were fed ad libitum 0.3% EGCG in their drinking water with a light-p
2.5. Zymography
The gelatinolytic activity of MMP-9 was measured by gelatin

zymography, as described previously [33,34]. Briefly, a total of 10 ll
of BAL fluid was subjected to electrophoresis in 10% polyacrylamide
gel containing gelatin (1 mg/ml). The gel was washed in 2.5% Triton
X-100 to permit renaturation of gelatinases, and stained with Coomas-
sie blue after overnight incubation. Destaining visualized clear zones of
lysis against a blue background, indicating gelatinase activity [35].

2.6. Western blot analysis
The lung tissues were homogenized, washed with PBS, and incu-

bated in lysis buffer in addition to a protease inhibitor cocktail (Sigma,
St. Louis, MO) to obtain extracts of lung proteins. A Western blot
analysis was performed as described previously [18]. The samples were
loaded to 10% SDS–PAGE gels and were separated at 120 V for
90 min. The blots were incubated with an anti-MMP-9 antibody di-
luted at a ratio of 1:800 overnight at 4 �C. The membranes were
stripped and reblotted with anti-actin antibody (Sigma) to verify the
equal loading of protein in each lane.

2.7. RNA isolation and RT-PCR
The total RNA from lung tissues was isolated with the use of a rapid

extraction method (TRI-Reagent), as previously described [16]. The to-
tal RNA was reverse-transcribed to cDNA in a buffer. The single-
strand cDNAs were used for the PCR amplification of MMP-9,
ICAM-1, VCAM-1, or GADPH. The PCR amplification was per-
formed by mixing 3 ll of RT reaction with 47 ll of buffer containing
2.5 U of Taq DNA polymerase (Promega, Madison, WI) and
30 pmol/L of specific primer pairs for mouse cDNAs of MMP-9,
ICAM-1, VCAM-1, or GAPDH, according to published mouse gene
sequences. All of the signals were visualized and analyzed by densito-
metric scanning (LAS-5000; Fuji Film, Tokyo, Japan).

2.8. Immunohistochemistry
At 48 h after the last challenge, lungs were removed from the mice

after they were killed. Before the lungs were removed, the lungs and
trachea were filled intratracheally with a fixative (4% formalin) using
a ligature around the trachea. Lung tissues were fixed with 10% (v/v)
neutral buffered formalin. The specimens were dehydrated and embed-
ded in paraffin. For histological examination, 4 lm sections of fixed
embedded tissues were cut on a Leica model 2165 rotary microtome
(Leica, Nussloch, Germany), placed on glass slides, deparaffinized,
and stained sequentially with hematoxylin 2 and eosin-Y (Richard-Al-
lan Scientific, Kalamazoo, MI). The inflammation score was graded by
three independent investigators who were not associated with this
study. The degree of peribronchial and perivascular inflammation
was evaluated on a subjective scale of 0–3, as described elsewhere. A
value of 0 was adjudged when no inflammation was detectable, a value
of 1 for occasional cuffing with inflammatory cells, a value of 2 for
most bronchi or vessels surrounded by a thin layer (one to five cells)
of inflammatory cells, and a value of 3 when most bronchi or vessels
were surrounded by a thick layer (more than five cells) of inflammatory
cells.

2.9. Determination of airway responsiveness to methacholine
Airway responsiveness was measured in mice 3 days after the last

challenge in an unrestrained conscious state, as described previously
[2–4]. Mice were placed in a barometric plethysmographic chamber
three times by 3% TDI dissolved in ethyl acetate/olive oil (1:4) at a 1-
s with 1% TDI dissolved in ethyl acetate/olive oil (1:4) by nebulization.
e same protocol but only with the solvent, ethyl acetate/olive oil (1:4).
rotected bottle from last sensitization to 2 days after first challenge.
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(All Medicus Co., Seoul, Korea) and baseline readings were taken and
averaged for 3 min. Aerosolized methacholine in increasing concentra-
tions (2.5–50 mg/ml, Sigma) were nebulized through an inlet of the
main chamber for 3 min. Readings were taken and averaged for
3 min after each nebulization. Enhanced pause (Penh), calculated as
(expiratory time/relaxation time � 1) · (peak expiratory flow/peak
inspiratory flow), according to the manufacturers’ protocol, is a
dimensionless value that represents a function of the proportion of
maximal expiratory to maximal inspiratory box pressure signals and
a function of the timing of expiration. Penh was used as a measure
of airway responsiveness to methacholine. Results were expressed as
the percentage increase of Penh following doses of a concentration
of methacholine challenge with each concentration of methacholine,
where the baseline Penh (after saline challenge) was expressed as
100%. Penh values averaged for 3 min after each nebulization were
evaluated.

2.10. Statistics
Data are expressed as means ± S.D. Statistical comparisons were

performed by a 1-way analysis of variance, followed by the Fisher test.
Significant differences between groups were determined by the un-
paired Student t test. Correlations were calculated by means of the
Spearman rank test. The statistical significance was set at P < 0.05.
3. Results

3.1. EGCG decreases the increased numbers of inflammatory

cells in BAL fluids of TDI-sensitized and TDI-challenged

mice

The total cell numbers in BAL fluids were significantly in-

creased, about 3-fold, compared to those in the control group

2 days after the last TDI challenge. The number of neutrophils,
Fig. 2. Effect of EGCG on total and differential cellular components of BAL
with the vehicle (PBS), TDI plus EGCG (TDI + EGCG), and TDI (TDI), res
after the TDI challenge. The different cell types were enumerated (A) and the
from one representative experiment out of 5 performed. This experiment use
NEU, neutrophil; EOS, eosinophil; LYM, lymphocyte; MAC, macrophages
eosinophils, lymphocytes, and Macrophages in BAL fluids was

increased 2.5-, 13.2-, 2-, and about 2-fold, respectively, com-

pared to those in the control group at 2 days after the TDI

challenge. Interestingly, the number of neutrophils, eosinoph-

ils, lymphocytes, and monocytes observed in BAL fluids in

the EGCG-feeding group of mice decreased to the level of

1.6-, 1.9-, 2-, 1-fold of TDI-challenge group. The administra-

tion of the EGCG significantly reduced the increase in neutro-

phils, eosinophils, lymphocytes, macrophages and total cells

elicited in the airway lumen 2 days after TDI inhalation

(Fig. 2).

3.2. EGCG inhibits ROS generation in BAL fluids

Oxidative stress occurs in many allergic and immunologic

disorders. Number of studies have shown an increased produc-

tion of ROS in asthma, AR and AD, which contribute, in part,

to tissue injury at sites of inflammation [36]. Respiratory burst

of eosinophils activated by eotaxin has been demonstrated,

leading in ROS production [37,38]. We examined the effect

of EGCG on ROS generation, as described in Fig. 3. For this

experiment, sampling was performed at 72 h after the last chal-

lenge. ROS generation in BAL fluids was increased signifi-

cantly at 72 h after TDI inhalation compared with the levels

after saline inhalation (Fig. 3). To investigate whether ROS

generation on EGCG affects, we detected 3.3 lM 2 0,7 0-dichlo-

rofluorescein diacetate (DCFDA). When treated with EGCG,

ROS levels was lower (18.69 ± 0.7%) than for TDI-induced

levels of ROS (39.28 ± 0.8%), suggesting that the administra-

tion of EGCG had a reducing effect on ROS generation.
fluids of TDI-sensitized and TDI-challenged mice. Mice were treated
pectively, as described in Section 2. The BAL cells were collected 2 days
numbers of each cellular component were counted (B). The results were
d 5mice (n = 5). #P < 0.05 vs. SAL + SAL, *P < 0.05 vs. OVA + SAL.
; TOT, total cell.



Fig. 3. Effect of EGCG on ROS levels in BAL fluids of TDI-sensitized and TDI-challenged mice. Sampling was performed at 72 h after the last
challenge in saline-inhaled mice administered saline (PBS), TDI-inhaled mice administered saline (TDI), and TDI-inhaled mice administered EGCG
(TDI + EGCG). The BAL fluids were stained with PBS containing 3.3 lM DCFDA, and analyzed using flow cytometry. ROS levels was lower
(18.69 ± 0.7%) than for TDI-induced levels of ROS (39.28 ± 0.8%), suggesting that the administration of EGCG had a reducing effect on ROS
generation. The histogram shown are gated on BAL cells. Data represent means ± S.E.M. from 6 independent experiments.
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3.3. EGCG inhibits infiltration of inflammatory cells in airways

The results of histological examination of lung tissues paral-

leled the cell numbers in BAL fluid. A marked influx of inflam-

matory cells into the airway and around blood vessels, as well

as airway luminal narrowing by secreted mucus, was observed

in the TDI-sensitized group (Fig. 4). Administration of EGCG

resulted in a marked inhibition of cellular infiltration into the

airways and pulmonary blood vessels (Fig. 4).

3.4. EGCG reduces expression of MMP-9 mRNA and protein in

lung tissues and decreases TNF-a and IL-5 production in the

BAL fluids of TDI-sensitized and TDI-challenged mice

The administration of EGCG significantly reduced the in-

crease in expression of MMP-9 mRNA in the lung tissues

48 h after TDI inhalation (Fig. 5A). The administration of

EGCG also reduced the increase expression of MMP-9 protein

in lung tissues (Fig. 5B). Also the administration of EGCG sig-

nificantly reduced the increased expression of MMP-9 gelatin-

olytic activity, as well as the level of pro-MMP-9 in lung

tissues 2 days after TDI inhalation (Fig. 5C). EGCG adminis-

tration also dramatically reduced the increase in TNF-a and

IL-5 production in BAL fluids 48 h after TDI inhalation

(Fig. 6).

3.5. EGCG reduces AHR

Airway responsiveness was assessed as a percent increase of

Penh in response to increasing doses of methacholine. In TDI-

sensitized and TDI-challenged mice, the dose–response curve

of percent Penh shifted to the left compared with that of con-

trol mice (Fig. 7). In addition, the percent Penh produced by

methacholine administration (at doses from 2.5 to 50 mg/ml)

increased significantly in the TDI-sensitized and TDI-

challenged mice compared with the controls. TDI-sensitized

and TDI-challenged mice treated with EGCG showed a dose–

response curve of percent Penh that shifted to the right

compared with that of untreated mice. The shift was dose-

dependent. These results indicate that EGCG treatment

reduces TDI-induced AHR.
Fig. 4. EGCG inhibits lung inflammation. Mice were sensitized and
challenged as described in Section 2. Sections were obtained from the
lungs of mice receiving the vehicle (PBS), TDI (TDI), and TDI plus
EGCG (TDI + EGCG), respectively. Lungs were removed 2 days after
the last airway challenge. Sections were stained by haematoxylin and
eosin staining (100·).
4. Discussion

This study is the first to provide experimental evidence dem-

onstrating that EGCG inhibits TDI-induced airway inflamma-

tion in a murine model of asthma. EGCG profoundly inhibited

asthmatic reactions such as leukocytic recruitment into the air-

way and lung inflammation.
Based on animal studies, the immunological processes in-

volved in airway inflammation of asthma are characterized

by the proliferation and activation of T cells of the subtype



Fig. 5. Effects of EGCG administration on the expression of MMP-9 in the lungs of TDI-challenged mice. TDI-sensitized mice were pretreated (or
not) with EGCG before the TDI challenge. The cell extracts were prepared from the lungs of the experimental mice 48 h after challenge as well as
from the lung tissue of a naive control mouse. The extracts were subjected to RT-PCR for MMP-9 mRNA analysis (A) and densitometric analyses
were performed. Also, the extracts were subjected to immunoblot analysis with antibodies to MMP-9; the blots were reprobed with antibodies to b-
actin to confirm the consistent application of samples (B), densitometric analyses were also performed. The effect of EGCG on MMP production in
lung tissues of TDI-sensitized and TDI-challenged. Sampling was performed at 48 h after challenge with the PBS (lane 1), TDI (lane 2), or TDI plus
EGCG (lane 3) and analyzed by zymography. All of the groups of the experiment showed MMP-9 production, but the TDI plus EGCG group only
showed the active form of MMP-9 (C). Data represent means ± S.E.M. from 6 independent experiments. **P < 0.05 vs. OVA.
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Th2 CD4+ [39]. Ultimately, mediators lead to degranulation of

effector/proinflammatory cells with the release of mediators

and oxidants, which lead to the injury and inflammation noted

in asthma. ROS such as superoxide, hydrogen peroxide, and

possibly hydroxyl radicals contribute to inflammatory changes

in the asthmatic airway [36–39]. In support of this concept are

the high levels of ROS and oxidatively modified proteins in the
airways of asthmatics [40,41,43,44]. High levels of ROS are

produced in the lungs of asthmatic patients by activated

inflammatory cells; i.e., eosinophils, alveolar macrophages,

and neutrophils.

Recently, EGCG and O-methylated derivatives of EGCG

(EGCG003Me) have been shown to suppress FceRI, a high-

affinity IgE receptor that plays a key role in a series of acute



Fig. 6. The effect of TNF-a and IL-5 on BAL fluid cytokines. TDI-
sensitized mice were treated as described in Fig. 1. (A) Bronchoalveolar
lavage (BAL) was performed 4 h after the last airway challenge as
described by the manufacturer. TNF-a cytokine levels in the BAL
fluids were measured by ELISA Kit. (B) The mice were bled 12 h after
the last airway TDI challenge. The detection limit of the IL-5 assay
was 5 pg/ml, and the assay is assured by the manufacturer to be specific
for the IL-5 ELISA kit. Data represent means ± S.E.M. from 5
independent experiments. #P < 0.05 vs. OVA.

Fig. 7. Effect of EGCG on airway responsiveness in TDI-sensitized
and TDI-challenged mice. Airway responsiveness was measured at
72 h after the last challenge in saline-inhaled mice administered PBS
(PBS), ethyl acetate/olive oil-inhaled mice administered PBS (Vehicle),
TDI-inhaled mice administered saline (TDI) and TDI-inhaled mice
administered EGCG (TDI + EGCG). Airway responsiveness to aero-
solized methacholine was measured in unrestrained, conscious mice.
Mice were placed into the main chamber and were nebulized first with
PBS, then with increasing doses (2.5–50 mg/ml) of methacholine for
3 min for each nebulization. Readings of breathing parameters were
taken for 3 min after each nebulization during which Penh values were
determined. Data represent means ± S.E.M. from 6 independent
experiments. *P < 0.05 vs. PBS, #P < 0.05 vs. OVA.
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and chronic allergic reactions such as atopic dermatitis, bron-

chial asthma, allergic rhinitis, and food allergies expressed in

human basophilic KU812 cells [25]. It has also been reported

that EGCG suppresses IgE-mediated histamine release and leu-

kotriene C4 via the blockade of reactive oxygen synthesis [42].

In addition, EGCG has an inhibitory effect on the gelatinolytic

activity of MMP-2 through enhancement of MMP-2 binding to

the tissue inhibitor of metalloproteinase-2 (TIMP-2) [29].

TDI-induced asthma has been recognized as a disease result-

ing from chronic airway inflammation characteristically asso-

ciated with the infiltration of lymphocytes, eosinophils, and

neutrophils into the bronchial lumen [6,7]. There is increasing

evidence that cytokine-inducible leukocyte-endothelial adhe-

sion molecules are important in the recruitment and migration

of leukocytes to the sites of inflammation [43,44]. Cell adhesion

molecules such as ICAM-1 and VCAM-1 are expressed on

endothelial cells and are markedly upregulated on the bron-

chial vascular endothelium of subjects with asthma [45,46].

Previous studies have demonstrated that the production of ma-

trix-degrading enzymes, such as MMP-9, is essential for leuko-

cytes extravasation and recruitment to the affected sites [15,19].

Recently, it was demonstrated that the administration of an

MMP inhibitor reduces the migration of inflammatory cells

through the endothelial and epithelial basement membranes
[28]. In addition, an MMP inhibitor regulates inflammatory

cell migration by reducing ICAM-1 and VCAM-1 expression

in a murine model of TDI-induced asthma [47].

In this murine model of asthma, we fed 0.3% EGCG into the

drinking water to evaluate the effect of EGCG on the expression

of MMP-9, TNF-a, and IL-5. It has been reported that EGCG is

better absorbed when administered through drinking fluid than

intragastric (IG) administration, that most of the ingested

EGCG apparently does not get into the blood, that and the ab-

sorbed EGCG is preferentially excreted through the bile to the

colon [42]. It was also reported that tmax and Cmax were

85.5 min and 19.8 ng/ml, respectively, when EGCG was given

to rats intragastrically at a dose of 75 mg/kg. Our current EGCG

dose (169.2 mg/kg/day) was determined by extrapolating from

previous reports [48,49]. Prediction of the dosage requirement

for humans still requires accessible in vitro biological data and

other absorption estimates obtained from in vitro animal mod-

els. Therefore, further studies exploring in vitro/in vivo correla-

tion and inter-species scaling would provide a more accurate

estimation of concentrations/doses of EGCG and its effect in hu-

mans. A better-designed clinical study is necessary to determine

the safety and efficacy of EGCG in human asthmatic subjects.

In this study, EGCG reduced the expression of MMP-9 in

lung tissues of TDI-sensitized and TDI-challenged mice. These

effects of EGCG may explain why the administration of

EGCG significantly reduced the increase in neutrophils, eosin-

ophils, lymphocytes, macrophages, and the total cells elicited

in the airway lumen 2 days after TDI inhalation (Fig. 2). It

has long been postulated that the expression of MMP-9 is reg-

ulated by cytokines, especially TNF [50,51]. Our data demon-

strate that EGCG reduces the increased numbers of

inflammatory cells (the source of TNF- a) in the airways and

then decreases the increased levels of TNF-a in BAL fluids

of TDI-sensitized and TDI-challenged mice (Fig. 6).
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Taken together, our results strongly indicate that EGCG re-

duces the pathologic lung damage due to the suppression of

ROS generation through the inhibition of inflammatory cells

migration by reducing MMP-9 expression and also by sup-

pressing TNF-a and IL-5 production. This study also supports

evidence that EGCG might offer a new therapeutic approach

to allergic airway diseases.
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