64 research outputs found

    TMO: Textured Mesh Acquisition of Objects with a Mobile Device by using Differentiable Rendering

    Full text link
    We present a new pipeline for acquiring a textured mesh in the wild with a single smartphone which offers access to images, depth maps, and valid poses. Our method first introduces an RGBD-aided structure from motion, which can yield filtered depth maps and refines camera poses guided by corresponding depth. Then, we adopt the neural implicit surface reconstruction method, which allows for high-quality mesh and develops a new training process for applying a regularization provided by classical multi-view stereo methods. Moreover, we apply a differentiable rendering to fine-tune incomplete texture maps and generate textures which are perceptually closer to the original scene. Our pipeline can be applied to any common objects in the real world without the need for either in-the-lab environments or accurate mask images. We demonstrate results of captured objects with complex shapes and validate our method numerically against existing 3D reconstruction and texture mapping methods.Comment: Accepted to CVPR23. Project Page: https://jh-choi.github.io/TMO

    Bell-Evans model and steered molecular dynamics in uncovering the dissociation kinetics of ligands targeting G-protein-coupled receptors

    Get PDF
    Recently, academic and industrial scientific communities involved in kinetics-based drug development have become immensely interested in predicting the drug target residence time. Screening drug candidates in terms of their computationally predicted residence times, which is a measure of drug efficacy in vivo, and simultaneously assessing computational binding affinities are becoming inevitable. Non-equilibrium molecular simulation approaches are proven to be useful in this purpose. Here, we have implemented an optimized approach of combining the data derived from steered molecular dynamics simulations and the Bell-Evans model to predict the absolute residence times of the antagonist ZMA241385 and agonist NECA that target the A2A adenosine receptor of the G-protein-coupled receptor (GPCR) protein family. We have predicted the absolute ligand residence times on the timescale of seconds. However, our predictions were many folds shorter than those determined experimentally. Additionally, we calculated the thermodynamics of ligand binding in terms of ligand binding energies and the per-residue contribution of the receptor. Subsequently, binding pocket hotspot residues that would be important for further computational mutagenesis studies were identified. In the experiment, similar sets of residues were found to be in significant contact with both ligands under study. Our results build a strong foundation for further improvement of our approach by rationalizing the kinetics of ligand unbinding with the thermodynamics of ligand binding

    Time Series Analysis on the Conformational Change of c-Src Tyrosine Kinase

    Get PDF
    c-Src tyrosine kinase plays an important role in signal transduction pathways, where its activity is regulated by phosphorylation of the two tyrosine residues. We performed targeted molecular dynamics simulation to obtain trajectory of conformational change from inactive to active form. To investigate the conformational change of c-Src tyrosine kinase, we applied network analysis to time series of correlation among residues. The time series of correlation between residues during the conformational change generated by targeted molecular dynamic simulation. With centrality measures such as betweenness centrality, degree centrality, and closeness centrality, we observed a few important residues that significantly contribute to the conformational change of c-Src tyrosine kinase for the different time steps

    Micromachined rubber O-ring micro-fluidic couplers

    Get PDF
    In this paper, we present a novel type of a "quick-connect" for micro-fluidic devices realized by a simple silicone-rubber O-ring MEMS coupler. As shown in this work, the proposed O-ring couplers are easy to fabricate and utilize, reusable, can withstand high pressure (>60 psi), and provide good seals. In the paper, results from both the leak rate test and pull-out test are presented, demonstrating the functionality of the O-ring couplers

    The effects of rebamipide, sucralfate, and rifaximin against inflammation and apoptosis in radiation-induced murine intestinal injury

    Get PDF
    Background Radiotherapy improves overall survival in patients with abdominopelvic malignancies. However, the toxic effects of radiation restrict the maximum dose that can be given, and there are no well-established preventive or therapeutic strategies. This study was conducted to evaluate whether rebamipide, sucralfate, and rifaximin have a suppressive effect on acute ionizing radiation (IR)-induced inflammation in the intestines of mice. Methods Thirty-six ICR mice were divided into a vehicle-treated group with sham irradiation; a vehicle-treated group with irradiation; rebamipide, sucralfate, or rifaximin-treated groups with irradiation; and a rebamipide-treated group with sham irradiation. The expression of proinflammatory, anti-inflammatory, proapoptotic, and antiapoptotic factors was investigated. Results The downregulated expression of nicotinamide phosphoribosyltransferase by IR was attenuated by all drugs (p<0.05). All drugs suppressed the IR-induced activation of NF-κB and phosphorylation of MAPKs (p<0.05) and attenuated the production of TNF-α, IL-1β, and IL-6 in response to IR (p<0.05). The administration of all drugs markedly attenuated IR-induced increases in iNOS, COX-2, and PGE2 (p<0.05), as well as [Ca2+] oscillations that were increased by IR. The expression of proapoptotic genes and antiapoptotic genes was suppressed and induced, respectively, by all drugs. IR treatment increased the release of cytochrome C, which was attenuated by all drugs (p<0.05). All drug treatments resulted in a significant decrease in the expression of caspase-3 and caspase-7 (p<0.05), which were both upregulated following IR treatment. Conclusions The administration of rebamipide, sucralfate, or rifaximin prior to radiation therapy may prevent or attenuate acute radiation-induced enterocolitis

    Mechanisms underlying neonate-specific metabolic effects of volatile anesthetics

    Get PDF
    Volatile anesthetics (VAs) are widely used in medicine, but the mechanisms underlying their effects remain ill-defined. Though routine anesthesia is safe in healthy individuals, instances of sensitivity are well documented, and there has been significant concern regarding the impact of VAs on neonatal brain development. Evidence indicates that VAs have multiple targets, with anesthetic and non-anesthetic effects mediated by neuroreceptors, ion channels, and the mitochondrial electron transport chain. Here, we characterize an unexpected metabolic effect of VAs in neonatal mice. Neonatal blood β-hydroxybutarate (β-HB) is rapidly depleted by VAs at concentrations well below those necessary for anesthesia. β-HB in adults, including animals in dietary ketosis, is unaffected. Depletion of β-HB is mediated by citrate accumulation, malonyl-CoA production by acetyl-CoA carboxylase, and inhibition of fatty acid oxidation. Adults show similar significant changes to citrate and malonyl-CoA, but are insensitive to malonyl-CoA, displaying reduced metabolic flexibility compared to younger animals

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore