1,177 research outputs found

    Polarization retention of thin ferroelectric poly(vinylidene fluoride-co-trifluoroethylene film capacitors

    Get PDF
    Excellent retention of the initial remanent polarizations was observed in ca. 200 nm thick ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) film capacitors with the writing pulse amplitude and time width of +/- 20 V and 1 ms, respectively, over 200 h at 80 degrees C. The opposite state program turned out more sensitive to retention deterioration than the same state one in both switching and nonswitching mode when either writing pulse amplitude or time width decreases. Nonswitching retention in the opposite state mode is in particular one of the most critical properties for designing a ferroelectric polymer capacitor memoryopen8

    A novel method for crystalline silicon solar cells with low contact resistance and antireflection coating by an oxidized Mg layer

    Get PDF
    One of the key issues in the solar industry is lowering dopant concentration of emitter for high-efficiency crystalline solar cells. However, it is well known that a low surface concentration of dopants results in poor contact formation between the front Ag electrode and the n-layer of Si. In this paper, an evaporated Mg layer is used to reduce series resistance of c-Si solar cells. A layer of Mg metal is deposited on a lightly doped n-type Si emitter by evaporation. Ag electrode is screen printed to collect the generated electrons. Small work function difference between Mg and n-type silicon reduces the contact resistance. During a co-firing process, Mg is oxidized, and the oxidized layer serves as an antireflection layer. The measurement of an Ag/Mg/n-Si solar cell shows that Voc, Jsc, FF, and efficiency are 602 mV, 36.9 mA/cm2, 80.1%, and 17.75%, respectively. It can be applied to the manufacturing of low-cost, simple, and high-efficiency solar cells

    Recovery of remanent polarization of poly(vinylidene fluoride-co-trifluoroethylene) thin film after high temperature annealing using topographically nanostructured aluminium bottom electrode

    Get PDF
    Facile recovery of ferroelectric polarization after high temperature annealing was observed in a poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) thin film on an etched Al bottom electrode which has a topographically nanostructured surface with hexagonal registry of the recessed hemispherical bowls of approximately 100 nm diameter. Fairly large remanent polarization of 10 mu C/cm(2) was obtained after annealing up to 185 degrees C with the etched Al electrode, while the polarization rapidly dropped near the melting temperature of P(VDF-TrFE) (similar to 150 degrees C) with a flat Al electrode. The topographic electrode is found to facilitate the reorganization of P(VDF-TrFE) crystal under electric field. (C) 2007 American Institute of Physicsopen142

    Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing

    Get PDF
    We describe a method of fabricating ferroelectric beta-type poly(vinylidene fluoride) (PVDF) thin films on Au substrate by the humidity controlled spin casting combined with rapid thermal treatment. Our method produces thin uniform ferroelectric PVDF film with ordered beta crystals consisting of characteristic needlelike microdomains. A capacitor with a 160 nm thick ferroelectric PVDF film exhibits the remanent polarization and coercive voltage of similar to 7.0 mu C/cm(2) and 8 V, respectively, with the temperature stability of up to 160 degrees C. A ferroelectric field effect transistor also shows a drain current bistablility of 100 at zero gate voltage with +/- 20 V gate voltage sweep. (C) 2008 American Institute of Physicsopen485

    Myeloid cells protect corneal nerves against sterile injury through negative-feedback regulation of TLR2–IL-6 axis

    Get PDF
    Background Mounting evidence suggests that the immune system plays detrimental or protective roles in nerve injury and repair. Main body Herein we report that both CD11bhiLy6Ghi and CD11bhiLy6ChiLy6Glo myeloid cells are required to protect corneal nerves against sterile corneal injury. Selective depletion of CD11bhiLy6Ghi or CD11bhiLy6ChiLy6Glo cells resulted in aggravation of corneal nerve loss, which correlated with IL-6 upregulation. IL-6 neutralization preserved corneal nerves while reducing myeloid cell recruitment. IL-6 replenishment exacerbated corneal nerve damage while recruiting more myeloid cells. In mice lacking Toll-like receptor 2 (TLR2), the levels of IL-6 and myeloid cells were decreased and corneal nerve loss attenuated, as compared to wild-type and TLR4 knockout mice. Corneal stromal fibroblasts expressed TLR2 and produced IL-6 in response to TLR2 stimulation. Conclusion Collectively, our data suggest that CD11bhiLy6Ghi and CD11bhiLy6ChiLy6Glo myeloid cells confer corneal nerve protection under sterile injury by creating a negative-feedback loop to suppress the upstream TLR2–IL-6 axis that drives corneal nerve loss

    Selective emitter using a screen printed etch barrier in crystalline silicon solar cell

    Get PDF
    The low level doping of a selective emitter by etch back is an easy and low cost process to obtain a better blue response from a solar cell. This work suggests that the contact resistance of the selective emitter can be controlled by wet etching with the commercial acid barrier paste that is commonly applied in screen printing. Wet etching conditions such as acid barrier curing time, etchant concentration, and etching time have been optimized for the process, which is controllable as well as fast. The acid barrier formed by screen printing was etched with HF and HNO(3) (1:200) solution for 15 s, resulting in high sheet contact resistance of 90 Ω/sq. Doping concentrations of the electrode contact portion were 2 × 10(21) cm(−3) in the low sheet resistance (Rs) region and 7 × 10(19) cm(−3) in the high Rs region. Solar cells of 12.5 × 12.5 cm(2) in dimensions with a wet etch back selective emitter J(sc) of 37 mAcm(−2), open circuit voltage (V(oc)) of 638.3 mV and efficiency of 18.13% were fabricated. The result showed an improvement of about 13 mV on V(oc) compared to those of the reference solar cell fabricated with the reactive-ion etching back selective emitter and with J(sc) of 36.90 mAcm(−2), V(oc) of 625.7 mV, and efficiency of 17.60%

    Shock ion acceleration by an ultrashort circularly polarized laser pulse via relativistic transparency in an exploded target

    Get PDF
    We investigated ion acceleration by an electrostatic shock in an exploded target irradiated by an ultrashort, circularly polarized laser pulse by means of one- and three-dimensional particle-in-cell simulations. We discovered that the laser field penetrating via relativistic transparency (RT) rapidly heated the upstream electron plasma to enable the formation of a high-speed electrostatic shock. Owing to the RT-based rapid heating and the fast compression of the initial density spike by a circularly polarized pulse, a new regime of the shock ion acceleration driven by an ultrashort (20-40 fs), moderately intense (1-1.4 PW) laser pulse is envisaged. This regime enables more efficient shock ion acceleration under a limited total pulse energy than a linearly polarized pulse with crystal laser systems of lambda similar to 1 mu mopen

    Role of interleukin-10 in endochondral bone formation in mice: Anabolic effect via the bone morphogenetic protein/Smad pathway

    Get PDF
    Objective: Interleukin-10 (IL-10) is a pleiotropic immunoregulatory cytokine with a chondroprotective effect that is elevated in cartilage and synovium in patients with osteoarthritis. However, the role of IL-10 during endochondral bone formation and its mechanism of action have not been elucidated. Methods: IL-10-/- mice and IL-10-treated tibial organ cultures were used to study loss and gain of IL-10 functions, respectively, during endochondral bone formation. Primary chondrocytes from the long bones of mouse embryos were cultured with and without IL-10. To assess the role of IL-10 in chondrogenic differentiation, we conducted mesenchymal cell micromass cultures. Results: The lengths of whole skeletons from IL-10-/- mice were similar to those of their wild-type littermates, although their skull diameters were smaller. The tibial growth plates of IL-10-/- mice showed shortening of the proliferating zone. Treatment with IL-10 significantly increased tibial lengths in organ culture. IL-10 also induced chondrocyte proliferation and hypertrophic differentiation in primary chondrocytes in vitro. Mechanistically, IL-10 activated STAT-3 and the Smad1/5/8 and ERK-1/2 MAP kinase pathways and induced the expression of bone morphogenetic protein 2 (BMP-2) and BMP-6 in primary chondrocytes. Furthermore, the blocking of BMP signaling attenuated the IL-10-mediated induction of cyclin D1 and RUNX-2 in primary chondrocytes and suppressed Alcian blue and alkaline phosphatase staining in mesenchymal cell micromass cultures. Conclusion: These results indicate that IL-10 acts as a stimulator of chondrocyte proliferation and chondrogenic or hypertrophic differentiation via activation of the BMP signaling pathway. © 2013, American College of Rheumatology

    The validity of the canadian triage and acuity scale in predicting resource utilization and the need for immediate life-saving interventions in elderly emergency department patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We evaluated the validity of the Canadian Triage and Acuity Scale (CTAS) in elderly emergency department (ED) patients. In particular, we examined the sensitivity and specificity of the CTAS for identifying elderly patients who received an immediate life-saving intervention in the ED.</p> <p>Methods</p> <p>We reviewed the medical records of consecutive patients who were 65 years of age or older and presented to a single academic ED within a three-month period. The CTAS triage scores were compared to actual patient course, including disposition, discharge outcome and resource utilization. We calculated the sensitivity and specificity of the CTAS triage for identifying patients who received an immediate intervention.</p> <p>Results</p> <p>Of the 1903 consecutive patients who were ≥ 65 years of age, 113 (5.9%) had a CTAS level of 1, 174 (9.1%) had a CTAS level of 2, 1154 (60.6%) had a CTAS level of 3, 347 (18.2%) had a CTAS level of 4, and 115 (6.0%) had a CTAS level of 5. As a patient's triage score increased, the severity (such as mortality and intensive care unit admission) and resource utilization increased significantly. Ninety-four of the patients received a life-saving intervention within an hour following their arrival to the ED. The CTAS scores for these patients were 1, 2 and 3 for 46, 46 and 2 patients, respectively. The sensitivity and specificity of a CTAS score of ≤ 2 for identifying patients for receiving an immediate intervention were 97.9% and 89.2%, respectively.</p> <p>Conclusions</p> <p>The CTAS is a triage tool with high validity for elderly patients, and it is an especially useful tool for categorizing severity and for recognizing elderly patients who require immediate life-saving intervention.</p
    corecore