11 research outputs found

    Traffic Information Acquisition System with Ultrasonic Sensors in Wireless Sensor Networks

    Get PDF
    The paper deals with the possibility of a theory of the nature of law as such, a theory which will be necessarily true of all law. It explores the relations between explanations of concepts and of the things they are concepts of, the possibility that the law has essential properties, and the possibility that the law changes its nature over time, and that what is law at a given place and time depends on the culture and concepts of that place and time. It also considers the possibility of understanding the institutions, such as the law, of cultures whose concepts are alien to us. The position advocated offers a reconciliation of ways in which a theory of the nature of law is parochial with its claim to be universal

    Traffic Information Acquisition System with Ultrasonic Sensors in Wireless Sensor Networks

    No full text
    Existing systems for traffic information acquisition have high costs and low scalability owing to their characteristics such as large size, wired power supplies, and wired communication. To achieve low costs and high scalability, the use of traffic information acquisition systems based on wireless sensor networks (WSNs) has been suggested. However, WSN-based systems have important issues, such as low computing power, limited battery capacity, and high transmission delay. Existing studies on WSN-based acquisition systems have not considered all three of these problems together. Moreover, most studies have focused on theoretical problems rather than practical ones. Therefore, we propose a new system that considers all three limitations of WSN-based systems. In our experiments, we installed our system on real roads for an accurate evaluation. The results show that our system has a high detection accuracy, low power consumption, and low transmission delay

    Hypertonic sodium choloride and mannitol induces COX-2 via different signaling pathways in mouse cortical collecting duct M-1 cells

    No full text
    The kidney cortical collecting duct is an important site for the maintenance of sodium balance. Previous studies have shown that, in renal medullary cells, hypertonic stress induces expression of cyclooxygenase-2 (COX-2) via NF-kappa B activation, but little is known about COX-2 expression in response to hypertonicity in the cortical collecting duct. Therefore, we examined the mechanism of hypertonic induction of COX-2 in M-1 cells derived from mouse cortical collecting duct. Induction of COX-2 protein was detected within 6 h of treatment with hypertonic sodium chloride. The treatment also increased COX-2 mRNA accumulation in a cycloheximide-independent manner, suggesting that ongoing protein synthesis is not required for COX-2 induction. Using reporter plasmids containing 0.2-, 0.3-, and 1.5-kb fragments of the COX-2 promoter, we found that hypertonic induction of COX-2 was due to an increase in promoter activity. The COX-2-inductive effect of hypertonicity was inhibited by SB203580, indicating that the effect is mediated by p38 MAPK. Since p38 MAPK can activate NF-kappa B, we made point mutations in the NF-kappa B binding site within the COX-2 promoter. The mutations did not block the induction of COX-2 promoter activity by hypertonic sodium chloride, and hypertonic sodium chloride failed to activate NF-kappa B binding site-driven reporter gene constructs. In contrast, hypertonic mannitol activated NF-kappa B, indicating that hypertonic mannitol and hypertonic sodium chloride activate COX-2 by different mechanisms. Thus, induction of COX-2 expression in M-1 cells by hypertonic sodium chloride does not involve activation of NF-kappa B. Furthermore, the signal transduction pathways that respond to hypertonic stress vary for different osmolytes in cortical collecting duct cells. (c) 2007 Elsevier Inc. All rights reserved

    a novel variant of gene in a neonate with congenital hypoparathyroidism

    No full text
    Autosomal-dominant hypocalcemia with hypercalciuria (ADHH) is a genetic disease characterized by hypoparathyroidism with hypercalciuria. Most patients with ADHH have calcium-sensing receptor (CaSR) gene mutations. The CaSR gene controls parathyroid secretions, and mutations in this gene can be detected via changes in serum calcium level. The activating mutation of the CaSR gene results in familial or sporadic ADHH. Most activating mutations of the CaSR gene are reportedly de novo missense mutations. This is the first case report of a novel activating variant of the CaSR gene in a neonate with congenital hypoparathyroidism with hypomagnesemia and hypercalciuria. We also report the 3-month follow-up management of the patient

    CHIR99021 Augmented the Function of Late Endothelial Progenitor Cells by Preventing Replicative Senescence

    No full text
    Endothelial progenitor cells (EPCs) are specialized cells in circulating blood, well known for their ability to form new vascular structures. Aging and various ailments such as diabetes, atherosclerosis and cardiovascular disease make EPCs vulnerable to decreasing in number, which affects their migration, proliferation and angiogenesis. Myocardial ischemia is also linked to a reduced number of EPCs and their endothelial functional role, which hinders proper blood circulation to the myocardium. The current study shows that an aminopyrimidine derivative compound (CHIR99021) induces the inhibition of GSK-3β in cultured late EPCs. GSK-3β inhibition subsequently inhibits mTOR by blocking the phosphorylation of TSC2 and lysosomal localization of mTOR. Furthermore, suppression of GSK-3β activity considerably increased lysosomal activation and autophagy. The activation of lysosomes and autophagy by GSK-3β inhibition not only prevented replicative senescence of the late EPCs but also directed their migration, proliferation and angiogenesis. To conclude, our results demonstrate that lysosome activation and autophagy play a crucial role in blocking the replicative senescence of EPCs and in increasing their endothelial function. Thus, the findings provide an insight towards the treatment of ischemia-associated cardiovascular diseases based on the role of late EPCs

    Uniform Graphene Quantum Dots Patterned from Self-Assembled Silica Nanodots

    No full text
    Graphene dots precisely controlled in size are interesting in nanoelectronics due to their quantum optical and electrical properties. However, most graphene quantum dot (GQD) research so far has been performed based on flake-type graphene reduced from graphene oxides. Consequently, it is extremely difficult to isolate the size effect of GQDs from the measured optical properties. Here, we report the size-controlled fabrication of uniform GQDs using self-assembled block copolymer (BCP) as an etch mask on graphene films grown by chemical vapor deposition (CVD). Electron microscope images show that as-prepared GQDs are composed of mono- or bilayer graphene with diameters of 10 and 20 nm, corresponding to the size of BCP nanospheres. In the measured photoluminescence (PL) spectra, the emission peak of the GQDs on the SiO<sub>2</sub> substrate is shown to be at ∼395 nm. The fabrication of GQDs was supported by the analysis of the Raman spectra and the observation of PL spectra after each fabrication step. Additionally, oxygen content in the GQDs is rationally controlled by additional air plasma treatment, which reveals the effect of oxygen content to the PL property

    Self-Assembly-Induced Formation of High-Density Silicon Oxide Memristor Nanostructures on Graphene and Metal Electrodes

    No full text
    We report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by a block copolymer self-assembly process. Optimized surface functionalization provides stacking structures of Si-containing block copolymer thin films to generate uniform memristor device structures. Both the silicon oxide film and nanodot memristors, which were formed by the plasma oxidation of the self-assembled block copolymer thin films, presented unipolar switching behaviors with appropriate set and reset voltages for resistive memory applications. This approach offers a very convenient pathway to fabricate ultrahigh-density resistive memory devices without relying on high-cost lithography and pattern-transfer processes
    corecore