14 research outputs found

    Sample-efficient Adversarial Imitation Learning

    Full text link
    Imitation learning, in which learning is performed by demonstration, has been studied and advanced for sequential decision-making tasks in which a reward function is not predefined. However, imitation learning methods still require numerous expert demonstration samples to successfully imitate an expert's behavior. To improve sample efficiency, we utilize self-supervised representation learning, which can generate vast training signals from the given data. In this study, we propose a self-supervised representation-based adversarial imitation learning method to learn state and action representations that are robust to diverse distortions and temporally predictive, on non-image control tasks. In particular, in comparison with existing self-supervised learning methods for tabular data, we propose a different corruption method for state and action representations that is robust to diverse distortions. We theoretically and empirically observe that making an informative feature manifold with less sample complexity significantly improves the performance of imitation learning. The proposed method shows a 39% relative improvement over existing adversarial imitation learning methods on MuJoCo in a setting limited to 100 expert state-action pairs. Moreover, we conduct comprehensive ablations and additional experiments using demonstrations with varying optimality to provide insights into a range of factors.Comment: A preliminary version of this manuscript was presented at Deep RL Workshop, NeurIPS 202

    FedClassAvg: Local Representation Learning for Personalized Federated Learning on Heterogeneous Neural Networks

    Full text link
    Personalized federated learning is aimed at allowing numerous clients to train personalized models while participating in collaborative training in a communication-efficient manner without exchanging private data. However, many personalized federated learning algorithms assume that clients have the same neural network architecture, and those for heterogeneous models remain understudied. In this study, we propose a novel personalized federated learning method called federated classifier averaging (FedClassAvg). Deep neural networks for supervised learning tasks consist of feature extractor and classifier layers. FedClassAvg aggregates classifier weights as an agreement on decision boundaries on feature spaces so that clients with not independently and identically distributed (non-iid) data can learn about scarce labels. In addition, local feature representation learning is applied to stabilize the decision boundaries and improve the local feature extraction capabilities for clients. While the existing methods require the collection of auxiliary data or model weights to generate a counterpart, FedClassAvg only requires clients to communicate with a couple of fully connected layers, which is highly communication-efficient. Moreover, FedClassAvg does not require extra optimization problems such as knowledge transfer, which requires intensive computation overhead. We evaluated FedClassAvg through extensive experiments and demonstrated it outperforms the current state-of-the-art algorithms on heterogeneous personalized federated learning tasks.Comment: Accepted to ICPP 2022. Code: https://github.com/hukla/fedclassav

    Improving Visual Prompt Tuning for Self-supervised Vision Transformers

    Full text link
    Visual Prompt Tuning (VPT) is an effective tuning method for adapting pretrained Vision Transformers (ViTs) to downstream tasks. It leverages extra learnable tokens, known as prompts, which steer the frozen pretrained ViTs. Although VPT has demonstrated its applicability with supervised vision transformers, it often underperforms with self-supervised ones. Through empirical observations, we deduce that the effectiveness of VPT hinges largely on the ViT blocks with which the prompt tokens interact. Specifically, VPT shows improved performance on image classification tasks for MAE and MoCo v3 when the prompt tokens are inserted into later blocks rather than the first block. These observations suggest that there exists an optimal location of blocks for the insertion of prompt tokens. Unfortunately, identifying the optimal blocks for prompts within each self-supervised ViT for diverse future scenarios is a costly process. To mitigate this problem, we propose a simple yet effective method that learns a gate for each ViT block to adjust its intervention into the prompt tokens. With our method, prompt tokens are selectively influenced by blocks that require steering for task adaptation. Our method outperforms VPT variants in FGVC and VTAB image classification and ADE20K semantic segmentation. The code is available at https://github.com/ryongithub/GatedPromptTuning.Comment: International Conference on Machine Learning (ICML) 202

    On the Powerfulness of Textual Outlier Exposure for Visual OoD Detection

    Full text link
    Successful detection of Out-of-Distribution (OoD) data is becoming increasingly important to ensure safe deployment of neural networks. One of the main challenges in OoD detection is that neural networks output overconfident predictions on OoD data, make it difficult to determine OoD-ness of data solely based on their predictions. Outlier exposure addresses this issue by introducing an additional loss that encourages low-confidence predictions on OoD data during training. While outlier exposure has shown promising potential in improving OoD detection performance, all previous studies on outlier exposure have been limited to utilizing visual outliers. Drawing inspiration from the recent advancements in vision-language pre-training, this paper venture out to the uncharted territory of textual outlier exposure. First, we uncover the benefits of using textual outliers by replacing real or virtual outliers in the image-domain with textual equivalents. Then, we propose various ways of generating preferable textual outliers. Our extensive experiments demonstrate that generated textual outliers achieve competitive performance on large-scale OoD and hard OoD benchmarks. Furthermore, we conduct empirical analyses of textual outliers to provide primary criteria for designing advantageous textual outliers: near-distribution, descriptiveness, and inclusion of visual semantics.Comment: Accepted by NeurIPS 202

    Diffusion-Stego: Training-free Diffusion Generative Steganography via Message Projection

    Full text link
    Generative steganography is the process of hiding secret messages in generated images instead of cover images. Existing studies on generative steganography use GAN or Flow models to obtain high hiding message capacity and anti-detection ability over cover images. However, they create relatively unrealistic stego images because of the inherent limitations of generative models. We propose Diffusion-Stego, a generative steganography approach based on diffusion models which outperform other generative models in image generation. Diffusion-Stego projects secret messages into latent noise of diffusion models and generates stego images with an iterative denoising process. Since the naive hiding of secret messages into noise boosts visual degradation and decreases extracted message accuracy, we introduce message projection, which hides messages into noise space while addressing these issues. We suggest three options for message projection to adjust the trade-off between extracted message accuracy, anti-detection ability, and image quality. Diffusion-Stego is a training-free approach, so we can apply it to pre-trained diffusion models which generate high-quality images, or even large-scale text-to-image models, such as Stable diffusion. Diffusion-Stego achieved a high capacity of messages (3.0 bpp of binary messages with 98% accuracy, and 6.0 bpp with 90% accuracy) as well as high quality (with a FID score of 2.77 for 1.0 bpp on the FFHQ 64×\times64 dataset) that makes it challenging to distinguish from real images in the PNG format

    Probabilistic Concept Bottleneck Models

    Full text link
    Interpretable models are designed to make decisions in a human-interpretable manner. Representatively, Concept Bottleneck Models (CBM) follow a two-step process of concept prediction and class prediction based on the predicted concepts. CBM provides explanations with high-level concepts derived from concept predictions; thus, reliable concept predictions are important for trustworthiness. In this study, we address the ambiguity issue that can harm reliability. While the existence of a concept can often be ambiguous in the data, CBM predicts concepts deterministically without considering this ambiguity. To provide a reliable interpretation against this ambiguity, we propose Probabilistic Concept Bottleneck Models (ProbCBM). By leveraging probabilistic concept embeddings, ProbCBM models uncertainty in concept prediction and provides explanations based on the concept and its corresponding uncertainty. This uncertainty enhances the reliability of the explanations. Furthermore, as class uncertainty is derived from concept uncertainty in ProbCBM, we can explain class uncertainty by means of concept uncertainty. Code is publicly available at https://github.com/ejkim47/prob-cbm.Comment: International Conference on Machine Learning (ICML) 202
    corecore