FedClassAvg: Local Representation Learning for Personalized Federated Learning on Heterogeneous Neural Networks

Abstract

Personalized federated learning is aimed at allowing numerous clients to train personalized models while participating in collaborative training in a communication-efficient manner without exchanging private data. However, many personalized federated learning algorithms assume that clients have the same neural network architecture, and those for heterogeneous models remain understudied. In this study, we propose a novel personalized federated learning method called federated classifier averaging (FedClassAvg). Deep neural networks for supervised learning tasks consist of feature extractor and classifier layers. FedClassAvg aggregates classifier weights as an agreement on decision boundaries on feature spaces so that clients with not independently and identically distributed (non-iid) data can learn about scarce labels. In addition, local feature representation learning is applied to stabilize the decision boundaries and improve the local feature extraction capabilities for clients. While the existing methods require the collection of auxiliary data or model weights to generate a counterpart, FedClassAvg only requires clients to communicate with a couple of fully connected layers, which is highly communication-efficient. Moreover, FedClassAvg does not require extra optimization problems such as knowledge transfer, which requires intensive computation overhead. We evaluated FedClassAvg through extensive experiments and demonstrated it outperforms the current state-of-the-art algorithms on heterogeneous personalized federated learning tasks.Comment: Accepted to ICPP 2022. Code: https://github.com/hukla/fedclassav

    Similar works

    Full text

    thumbnail-image

    Available Versions