37 research outputs found

    Relation Embedding based Graph Neural Networks for Handling Heterogeneous Graph

    Full text link
    Heterogeneous graph learning has drawn significant attentions in recent years, due to the success of graph neural networks (GNNs) and the broad applications of heterogeneous information networks. Various heterogeneous graph neural networks have been proposed to generalize GNNs for processing the heterogeneous graphs. Unfortunately, these approaches model the heterogeneity via various complicated modules. This paper aims to propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs. Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections. To optimize these relation embeddings and the other parameters simultaneously, a gradient scaling factor is proposed to constrain the embeddings to converge to suitable values. Besides, we theoretically demonstrate that our RE-GNNs have more expressive power than the meta-path based heterogeneous GNNs. Extensive experiments on the node classification tasks validate the effectiveness of our proposed method

    Asynchronous Collaborative Autoscanning with Mode Switching for Multi-Robot Scene Reconstruction

    Full text link
    When conducting autonomous scanning for the online reconstruction of unknown indoor environments, robots have to be competent at exploring scene structure and reconstructing objects with high quality. Our key observation is that different tasks demand specialized scanning properties of robots: rapid moving speed and far vision for global exploration and slow moving speed and narrow vision for local object reconstruction, which are referred as two different scanning modes: explorer and reconstructor, respectively. When requiring multiple robots to collaborate for efficient exploration and fine-grained reconstruction, the questions on when to generate and how to assign those tasks should be carefully answered. Therefore, we propose a novel asynchronous collaborative autoscanning method with mode switching, which generates two kinds of scanning tasks with associated scanning modes, i.e., exploration task with explorer mode and reconstruction task with reconstructor mode, and assign them to the robots to execute in an asynchronous collaborative manner to highly boost the scanning efficiency and reconstruction quality. The task assignment is optimized by solving a modified Multi-Depot Multiple Traveling Salesman Problem (MDMTSP). Moreover, to further enhance the collaboration and increase the efficiency, we propose a task-flow model that actives the task generation and assignment process immediately when any of the robots finish all its tasks with no need to wait for all other robots to complete the tasks assigned in the previous iteration. Extensive experiments have been conducted to show the importance of each key component of our method and the superiority over previous methods in scanning efficiency and reconstruction quality.Comment: 13pages, 12 figures, Conference: SIGGRAPH Asia 202

    A single nucleotide variant in HNF-1β is associated with maturity-onset diabetes of the young in a large Chinese family

    Get PDF
    Background: Maturity-onset diabetes of the young (MODY) is a heterogeneous entity of monogenic disorders characterized by autosomal dominant inheritance. Eleven genes were related, including HNF4α, GCK, HNF1α, IPF1, and HNF-1β, and various mutations are being reported. Methods: To help the overall understanding of MODY-related pathologic mutations, we studied a large MODY family found in 2012, in Shandong, China, which contained 9 patients over 3 generations. DNA was extracted from the periphery blood samples of (i) 9 affected members, (ii) 17 unaffected members, and (iii) 1000 healthy controls. Three pooled samples were obtained by mixing equal quantity of DNA of each individual within the each group. Totally 400 microsatellite markers across the whole genome were genotyped by capillary electrophoresis. The known MODY-related gene near the identified marker was sequenced to look for putative risk variants. Results: Allelic frequency of marker D17S798 on chromosome 17q11.2 were significantly different (P<0.001) between the affected vs. unaffected members and the affected vs. healthy controls, but not between the unaffected members vs. healthy controls. MODY5-related gene, hepatocyte nuclear factor-1β (HNF-1β) on 17q12 near D17S798 became the candidate gene. A single nucleotide variant (SNV) of C77T in the non-coding area of exon 1 of HNF-1β was found to be related to MODY5. Conclusion: This novel SNV of HNF-1β contributes to the diabetes development in the family through regulating gene expression most likely. The findings help presymptomatic diagnosis, and imply that mutations in the non-coding areas, as well as in the exons, play roles in the etiology of MODY

    Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophene

    Get PDF
    This article is part of the Advanced Thermoelectric Materials and Devices special issue.Conjugated polymers with oligoether side chains make up a promising class of thermoelectric materials. In this work, the impact of the side-chain length on the thermoelectric and mechanical properties of polythiophenes is investigated. Polymers with tri-, tetra-, or hexaethylene glycol side chains are compared, and the shortest length is found to result in thin films with the highest degree of order upon doping with the p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). As a result, a stiff material with an electrical conductivity of up to 830 ± 15 S cm–1 is obtained, resulting in a thermoelectric power factor of about 21 μW m–1 K–2 in the case of as-cast films. Aging at ambient conditions results in an initial decrease in thermoelectric properties but then yields a highly stable performance for at least 3 months, with values of about 200 S cm–1 and 5 μW m–1 K–2. Evidently, identification of the optimal side-chain length is an important criterion for the design of conjugated polymers for organic thermoelectrics.We acknowledge funding from the European Union’s Horizon 2020 research and innovation programme through the Marie Skłodowska-Curie grant agreement no. 955837 (HORATES) and the Knut and Alice Wallenberg Foundation through a Wallenberg Academy Fellowship Prolongation grant. We acknowledge financial support from the Spanish Ministerio de Ciencia e Innovacíon for its support through grant CEX2019-000917-S (FUNFUTURE) in the framework of the Spanish Severo Ochoa Centre of Excellence program, and grants PID2020-119777GBI00 (THERM2MAIN), and PDC2021-121814-I00 (COVEQ). K.X. acknowledges a fellowship (CSC201806950006) from China Scholarship Council. K.X. and J.G. thank the PhD programme in Materials Science from Universitat Autònoma de Barcelona in which they are enrolled. We thank Johanna Heimonen for help with SEC measurements and Anders Mårtensson for carrying out the AFM measurements. This project was in part performed at the Chalmers Materials Analysis Laboratory (CMAL).With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe

    A single nucleotide variant in HNF-1β is associated with maturity-onset diabetes of the young in a large Chinese family

    Get PDF
    Background: Maturity-onset diabetes of the young (MODY) is a heterogeneous entity of monogenic disorders characterized by autosomal dominant inheritance. Eleven genes were related, including HNF4α, GCK, HNF1α, IPF1, and HNF-1β, and various mutations are being reported. Methods: To help the overall understanding of MODY-related pathologic mutations, we studied a large MODY family found in 2012, in Shandong, China, which contained 9 patients over 3 generations. DNA was extracted from the periphery blood samples of (i) 9 affected members, (ii) 17 unaffected members, and (iii) 1000 healthy controls. Three pooled samples were obtained by mixing equal quantity of DNA of each individual within the each group. Totally 400 microsatellite markers across the whole genome were genotyped by capillary electrophoresis. The known MODY-related gene near the identified marker was sequenced to look for putative risk variants. Results: Allelic frequency of marker D17S798 on chromosome 17q11.2 were significantly different (P<0.001) between the affected vs. unaffected members and the affected vs. healthy controls, but not between the unaffected members vs. healthy controls. MODY5-related gene, hepatocyte nuclear factor-1β (HNF-1β) on 17q12 near D17S798 became the candidate gene. A single nucleotide variant (SNV) of C77T in the non-coding area of exon 1 of HNF-1β was found to be related to MODY5. Conclusion: This novel SNV of HNF-1β contributes to the diabetes development in the family through regulating gene expression most likely. The findings help presymptomatic diagnosis, and imply that mutations in the non-coding areas, as well as in the exons, play roles in the etiology of MODY

    The Changes of Spatiotemporal Pattern of Rocky Desertification and Its Dominant Driving Factors in Typical Karst Mountainous Areas under the Background of Global Change

    No full text
    There are significant differences in the dominant driving factors of rocky desertification evolution in different historical periods in southwest karst mountainous areas. However, previous studies were mostly conducted in specific periods. In this study, taking Bijie City as an example, the spatial and temporal evolution pattern of rocky desertification in Bijie City in the recent 35 years was analyzed by introducing the feature space model and the gravity center model, and then the dominant driving factors of rocky desertification in the study area in different historical periods were clarified based on GeoDetector. The results were as follows: (1) The point-to-point B (bare land index)-DI (dryness index) feature space model has high applicability for rocky desertification monitoring, and its inversion accuracy was 91.3%. (2) During the past 35 years, the rocky desertification in Bijie belonged to the moderate rocky desertification on the whole, and zones of intensive and severe rocky desertification were mainly distributed in the Weining Yi, Hui, and Miao Autonomous Region. (3) During 1985–2020, the rocky desertification in Bijie City showed an overall weakening trend (‘weakening–aggravating–weakening’). (4) From 1985 to 2020, the gravity center of rocky desertification in Bijie City moved westward, indicating that the aggravating degree of rocky desertification in the western region of the study area was higher than that in the eastern region. (5) The dominant factors affecting the evolution of rocky desertification in the past 35 years shifted from natural factor (vegetation coverage) to human activity factor (population density). The research results could provide decision supports for the prevention and control of rocky desertification in Bijie City and even the southwest karst mountainous area

    The Changes of Spatiotemporal Pattern of Rocky Desertification and Its Dominant Driving Factors in Typical Karst Mountainous Areas under the Background of Global Change

    No full text
    There are significant differences in the dominant driving factors of rocky desertification evolution in different historical periods in southwest karst mountainous areas. However, previous studies were mostly conducted in specific periods. In this study, taking Bijie City as an example, the spatial and temporal evolution pattern of rocky desertification in Bijie City in the recent 35 years was analyzed by introducing the feature space model and the gravity center model, and then the dominant driving factors of rocky desertification in the study area in different historical periods were clarified based on GeoDetector. The results were as follows: (1) The point-to-point B (bare land index)-DI (dryness index) feature space model has high applicability for rocky desertification monitoring, and its inversion accuracy was 91.3%. (2) During the past 35 years, the rocky desertification in Bijie belonged to the moderate rocky desertification on the whole, and zones of intensive and severe rocky desertification were mainly distributed in the Weining Yi, Hui, and Miao Autonomous Region. (3) During 1985–2020, the rocky desertification in Bijie City showed an overall weakening trend (‘weakening–aggravating–weakening’). (4) From 1985 to 2020, the gravity center of rocky desertification in Bijie City moved westward, indicating that the aggravating degree of rocky desertification in the western region of the study area was higher than that in the eastern region. (5) The dominant factors affecting the evolution of rocky desertification in the past 35 years shifted from natural factor (vegetation coverage) to human activity factor (population density). The research results could provide decision supports for the prevention and control of rocky desertification in Bijie City and even the southwest karst mountainous area

    miR-3189-3p Mimics Enhance the Effects of S100A4 siRNA on the Inhibition of Proliferation and Migration of Gastric Cancer Cells by Targeting CFL2

    No full text
    GDF15 is a downstream gene of S100A4. miR-3189 is embedded in the intron of GDF15—and coexpressed with it. miR-3189-3p functions to inhibit the proliferation and migration of glioblastoma cells. We speculated that S100A4 might regulate miR-3189-3p to affect its function in gastric cancer cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that miR-3189-3p expression was significantly downregulated in MGC803 cells after S100A4 knockdown. Overexpression of miR-3189-3p significantly inhibited the proliferation and migration of the cells. Moreover, miR-3189-3p mimics enhanced the effects of an S100A4 siRNA on the inhibition of cell proliferation and migration. Dual luciferase reporter assays, qRT-PCR, and Western blotting verified that CFL2 is a direct target of miR-3189-3p. CFL2 mediates the regulation of miR-3189-3p on the proliferation and migration of MGC803 cells. Data mining based on Kaplan–Meier plots showed that high CFL2 expression is associated with poor overall survival and first progression in gastric cancer. These data suggested that miR-3189-3p mimics enhanced the effects of the S100A4 siRNA on the inhibition of gastric cancer cell proliferation and migration by targeting CFL2. The findings suggested that when targeting S100A4 to treat gastric cancer, consideration and correction for counteracting factors should obtain a satisfactory effect

    Optimizing Melamine Resin Microspheres with Excess Formaldehyde for the SERS Substrate

    No full text
    Influence of the excess monomer within the synthetic reaction solution of melamine resin microspheres (MFMSs) on the surface-enhanced Raman spectroscopy (SERS) enhancement from Rhodamine 6G (R6G) was investigated, where the R6G was adsorbed on the silver nanoparticles (AgNPs) that were loaded on the MFMSs. Surface characteristics of the MFMSs were modified by the excess monomer (i.e., the excessive melamine or formaldehyde) through its terminal overreaction, which can be simply controlled by some of the synthetic reaction conditions, thus further allowing us to optimize the assembly of the loaded AgNPs for the SERS detection. These SERS substrates incorporating the optimized MFMSs with the excess formaldehyde can also be used for tracing analyses of more environmental and food contaminants
    corecore