737 research outputs found

    The Fast Medical Image Segmentation of Target Region Based on Improved FM Algorithm

    Get PDF
    AbstractThis paper studies several kinds of image segmentation algorithm,and region-growing algorithm and fast level set matching algorithm FM are programmed by VC and verified,thereinto,the speed of segmentation of region-growing algorithm is fast.It is primarily affected by the identity of gray level of object region, for the inconsistent object region, excessive segmentation and missing segmentation will happen.The fast matching method can easily handle the geometric objects which topological structure is complex or changing, but the evolving curve also easily leak from the boundary, if there are holes in an object which has been segmented, it will not quite separate the interior outline of the object,so,aiming at the characteristics of medical image,an improved fast matching algorithm is presented in this paper, it can effectively enhance the image segmentation effect and prevent the loss of details of lines, and the internal change of topological structures of the objects can also be segmented better by it

    Cloning and expression of first gene for biodegrading microcystins by Sphingopyxis sp. USTB-05

    Get PDF
    Harmful cyanobacterial blooms (HCBs) in natural waters are a growing environmental problem worldwide because microcystins (MCs) produced by cyanobacteria are potent hepatotoxins and tumor promoters. MCs are resistant against physical and chemical factors. Thus, biodegradation is the most efficient method for removing MCs, and a number of bacterial strains, especially genus _Sphingomonas_, have been isolated for biodegrading MCs. Although the pathway, enzyme, and gene for biodegrading MCs by _Sphingomonas sp._ have been widely identified recently, no gene concerned with the biodegradation of MCs has been successfully cloned and expressed. In this study, we show that the first and most important gene of mlrA, containing 1,008 bp nucleotides in length, in the biodegradation pathway of MCs by _Sphingopyxis sp._ USTB-05, which encodes an enzyme MlrA containing 336 amino acid residues, is firstly cloned and expressed in _E. coli_ DH5α, with a cloning vector of pGEM-T easy and an expression vector of pGEX-4T-1. The encoded and expressed enzyme MlrA is responsible for cleaving the target peptide bond between 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-deca-4,6-dienoic acid (Adda) and Arg in the cyclic structure of microcystin-RR (MC-RR)and microcystin-LR(MC-LR), two typical and toxic types of MCs. Linear MC-RR and MC-LR are produced as the first products. These findings are important in constructing a new genetic bacterial strain for the efficient removal of MCs from the important water supplies and resolving the controversy on the biodegradation pathway of different types of MCs by genus _Sphingomonas_

    Pricing Strategy and Quick Response Adoption System with Strategic Customers

    Get PDF
    This study determined the competitive advantage of a quick response (QR) system when a firm faces forward-looking customers with heterogeneous and uncertain valuations for a product, uncertain demand, and two selling periods. We identify two classes of pricing strategies, namely, no-price commitment strategy and price commitment strategy. Interestingly, the unique equilibrium is proven to exist if and only if most customers have high tastes on a product’s value. We also prove that when customers possess beliefs about the markdown in the second period being smaller enough, a firm obtains a high profit with price commitment; otherwise he obtains a high profit without price commitment. Moreover, we distinguish the competitive advantage of a QR system from two strategies. When a firm uses no-price commitment strategy, the value of QR system in the first period decreases and in the second period increases with customer’s strategic behavior. When a firm provides price commitment, the value of QR system in the first period may increase, decrease, or decrease first and then increase with customer’s strategic behavior. And the value of QR in the second period under price commitment strategy decreases or rises first and then decreases with customer’s strategic behavior

    Effect of activated carbon, oxidation and UV treatment on 2-methylisoborneol and geosmin removal from treated water

    Get PDF
    Geosmin and 2-methylisoborneol (MIB) are two contributors to taste and odour in water, and originate from cyanobacteria and other microorganisms in surface water. This thesis examined the use of activated carbon, hydrogen peroxide and UV treatment on removal of these two compounds from water. Geosmin and MIB were analysed using headspace solid phase micro-extraction (SPME) and gas chromatography coupled with mass spectrometry and flame ionization detection. Method development examined the effect of salt addition, sample heating time, and extraction time on GC peak area. Salt addition gave up to 40% lower GC peak areas for MIB and geosmin compared to samples without salt, while increasing sample heating time and extraction time increased GC peak area, increasing the lower detection limits. Two minutes extraction time gave peak areas 75% of that for 10 minutes extraction time. Both GC-MS and GC-FID were reliable methods for analysis with standard deviations being less than 5% of the average peak area obtained from the GC. Activated carbon was effective at removing geosmin and MIB, with 500 mg GAC per L removing 90% of the geosmin and MIB. Geosmin absorption showed a type II isotherm suggesting monolayer followed by multilayer absorption, while MIB absorption was almost linear. Langmuir-Freundlich and Freundlich isotherms fitted the MIB data well but not as well for geosmin. Oxidative treatment using H2O2 removed 84 % of geosmin and 49 % of MIB. UV degradation of geosmin and MIB using the Steriflo system removed up to 31 % of MIB and 76 % of geosmin after 4 hours. After 18 hours, geosmin had 84 % removal while MIB was only 66 %. Addition of H2O2 increased removal for MIB and geosmin up to 89 and 90 % respectively after 18 hours. Experimental results were simulated using a model that accounted for UV and hydrogen peroxide degradation, using one set of parameters over a range of conditions for each of MIB and geosmin

    Simulation Study on Material Property of Cantilever Piezoelectric Vibration Generator

    Get PDF
    Abstract: For increasing generating capacity of cantilever piezoelectric vibration generator with limited volume, relation between output voltage, inherent frequency and material parameter of unimorph, bimorph in series type and bimorph in parallel type piezoelectric vibration generator is analyzed respectively by mechanical model and finite element modeling. The results indicate PZT-4, PZT-5A and PZT-5H piezoelectric materials and stainless steel, nickel alloy substrate material should be firstly chosen. Copyright © 2014 IFSA Publishing, S. L

    High-efficiency generation of nanoscale single silicon vacancy defect array in silicon carbide

    Full text link
    Color centers in silicon carbide have increasingly attracted attention in recent years owing to their excellent properties such as single photon emission, good photostability, and long spin coherence time even at room temperature. As compared to diamond which is widely used for holding Nitrogen-vacancy centers, SiC has the advantage in terms of large-scale, high-quality and low cost growth, as well as advanced fabrication technique in optoelectronics, leading to the prospects for large scale quantum engineering. In this paper, we report experimental demonstration of the generation of nanoscale VSiV_{Si} single defect array through ion implantation without the need of annealing. VSiV_{Si} defects are generated in pre-determined locations with resolution of tens of nanometers. This can help in integrating VSiV_{Si} defects with the photonic structures which, in turn, can improve the emission and collection efficiency of VSiV_{Si} defects when it is used in spin photonic quantum network. On the other hand, the defects are shallow and they are generated 40nm\sim 40nm below the surface which can serve as critical resources in quantum sensing application
    corecore