175 research outputs found

    Delayed expression of cell cycle proteins contributes to astroglial scar formation and chronic inflammation after rat spinal cord contusion

    Get PDF
    Background Traumatic spinal cord injury (SCI) induces secondary tissue damage that is associated with astrogliosis and inflammation. We previously reported that acute upregulation of a cluster of cell-cycle-related genes contributes to post-mitotic cell death and secondary damage after SCI. However, it remains unclear whether cell cycle activation continues more chronically and contributes to more delayed glial change. Here we examined expression of cell cycle-related proteins up to 4 months following SCI, as well as the effects of the selective cyclin-dependent kinase (CDKs) inhibitor CR8, on astrogliosis and microglial activation in a rat SCI contusion model. Methods Adult male rats were subjected to moderate spinal cord contusion injury at T8 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 weeks or 4 months post-injury, and processed for protein expression and lesion volume. Functional recovery was assessed over the 4 months after injury. Results Immunoblot analysis demonstrated a marked continued upregulation of cell cycle-related proteins − including cyclin D1 and E, CDK4, E2F5 and PCNA − for 4 months post-injury that were highly expressed by GFAP+ astrocytes and microglia, and co-localized with inflammatory-related proteins. CR8 administrated systemically 3 h post-injury and continued for 7 days limited the sustained elevation of cell cycle proteins and immunoreactivity of GFAP, Iba-1 and p22PHOX − a key component of NADPH oxidase − up to 4 months after SCI. CR8 treatment significantly reduced lesion volume, which typically progressed in untreated animals between 1 and 4 months after trauma. Functional recovery was also significantly improved by CR8 treatment after SCI from week 2 through week 16. Conclusions These data demonstrate that cell cycle-related proteins are chronically upregulated after SCI and may contribute to astroglial scar formation, chronic inflammation and further tissue loss

    Multi‐Channel Lanthanide Nanocomposites for Customized Synergistic Treatment of Orthotopic Multi‐Tumor Cases

    Get PDF
    Simultaneous photothermal ablation of multiple tumors is limited by unpredictable photo-induced apoptosis, caused by individual intratumoral differences. Here, a multi-channel lanthanide nanocomposite was used to achieve tailored synergistic treatment of multiple subcutaneous orthotopic tumors under non-uniform whole-body infrared irradiation prescription. The nanocomposite reduces intratumoral glutathione by simultaneously activating the fluorescence and photothermal channels. The fluorescence provides individual information on different tumors, allowing customized prescriptions to be made. This enables optimal induction of hyperthermia and dosage of chemo drugs, to ensure treatment efficacy, while avoiding overtherapy. With an accessional therapeutic laser system, customized synergistic treatment of subcutaneous orthotopic cancer cases with multiple tumors is possible with both high efficacy and minimized side effects

    Intestinal segment and vitamin D3 concentration affect gene expression levels of calcium and phosphorus transporters in broiler chickens

    Get PDF
    Two experiments were conducted in this research. Experiment 1 investigated the spatial expression characteristics of calcium (Ca) and phosphorus (P) transporters in the duodenum, jejunum, and ileum of 21-day-old broilers provided with adequate nutrient feed. Experiment 2 evaluated the effects of dietary vitamin D3 (VD3) concentration (0, 125, 250, 500, 1,000, and 2,000 IU/kg) on growth performance, bone development, and gene expression levels of intestinal Ca and P transporters in 1–21-day-old broilers provided with the negative control diet without supplemental VD3. Results in experiment 1 showed that the mRNA levels of calcium-binding protein 28-kDa (CaBP-D28k), sodium-calcium exchanger 1 (NCX1), plasma membrane calcium ATPase 1b (PMCA1b), and IIb sodium-phosphate cotransporter (NaPi-IIb) were the highest in the broiler duodenum. By contrast, the mRNA levels of inorganic phosphate transporter 1 (PiT-1) and 2 (PiT-2) were the highest in the ileum. Results in experiment 2 showed that adding 125 IU/kg VD3 increased body weight gain (BWG), feed intake (FI), bone weight, and percentage and weight of Ca and P in the tibia and femur of 1–21-day-old broilers compared with the negative control diet (p < 0.05). The rise in dietary VD3 levels from 125 to 1,000 IU/kg further increased the BWG, FI, and weights of the bone, ash, Ca, and P (p < 0.05). No difference in growth rate and leg bone quality was noted in the broilers provided with 1,000 and 2,000 IU/kg VD3 (p > 0.05). Supplementation with 125–2,000 IU/kg VD3 increased the mRNA abundances of intestinal Ca and P transporters to varying degrees. The mRNA level of CaBP-D28k increased by 536, 1,161, and 28 folds in the duodenum, jejunum, and ileum, respectively, after adding 1,000 IU/kg VD3. The mRNA levels of other Ca and P transporters (PMCA1b, NCX1, NaPi-IIb, PiT-1, and PiT-2) increased by 0.57–1.74 folds by adding 1,000–2,000 IU/kg VD3. These data suggest that intestinal Ca and P transporters are mainly expressed in the duodenum of broilers. Moreover, the addition of VD3 stimulates the two mineral transporter transcription in broiler intestines

    Autophagy in Neurotrauma: Good, Bad, or Dysregulated

    No full text
    Autophagy is a physiological process that helps maintain a balance between the manufacture of cellular components and breakdown of damaged organelles and other toxic cellular constituents. Changes in autophagic markers are readily detectable in the spinal cord and brain following neurotrauma, including traumatic spinal cord and brain injury (SCI/TBI). However, the role of autophagy in neurotrauma remains less clear. Whether autophagy is good or bad is under debate, with strong support for both a beneficial and detrimental role for autophagy in experimental models of neurotrauma. Emerging data suggest that autophagic flux, a measure of autophagic degradation activity, is impaired in injured central nervous systems (CNS), and interventions that stimulate autophagic flux may provide neuroprotection in SCI/TBI models. Recent data demonstrating that neurotrauma can cause lysosomal membrane damage resulting in pathological autophagosome accumulation in the spinal cord and brain further supports the idea that the impairment of the autophagy–lysosome pathway may be a part of secondary injury processes of SCI/TBI. Here, we review experimental work on the complex and varied responses of autophagy in terms of both the beneficial and detrimental effects in SCI and TBI models. We also discuss the existing and developing therapeutic options aimed at reducing the disruption of autophagy to protect the CNS after injuries
    corecore