83 research outputs found

    Human ANKLE1 is a nuclease specific for branched DNA

    Get PDF
    All physical connections between sister chromatids must be broken before cells can divide, and eukaryotic cells have evolved multiple ways in which to process branchpoints connecting DNA molecules separated both spatially and temporally. A single DNA link between chromatids has the potential to disrupt cell cycle progression and genome integrity, so it is highly likely that cells require a nuclease that can process remaining unresolved and hemi-resolved DNA junctions and other branched species at the very late stages of mitosis. We argue that ANKLE1 probably serves this function in human cells (LEM-3 in Caenorhabditis elegans). LEM-3 has previously been shown to be located at the cell mid-body, and we show here that human ANKLE1 is a nuclease that cleaves a range of branched DNA species. It thus has the substrate selectivity consistent with an enzyme required to process a variety of unresolved and hemi-resolved branchpoints in DNA. Our results suggest that ANKLE1 acts as a catch-all enzyme of last resort that allows faithful chromosome segregation and cell division to occur. (C) 2020 The Author(s). Published by Elsevier Ltd

    Association between ecological risks and ecosystem services in an urban agglomeration in arid China

    Get PDF
    Rapid urbanization leads to changes in ecosystem services and may exacerbate ecological risks. Clarifying the relationship between these two factors in a specific context is essential to explore the integrated management model and achieve sustainable regional development. However, previous studies mainly lack an integrated analysis, fail to clearly explain the mechanism of ecosystem change, and can neither support landscape ecological security construction nor spatial planning and management. This study, using the urban agglomeration on the northern slope of the Tianshan Mountains (UANSTM) as an example, applied multi-source data from 2010 to 2020, investigated the changes and relationships between ecological risks and ecosystem services, and proposes an assessment framework. The total ecosystem services (TES) of the studied agglomeration showed a decreasing trend, with an overall loss of 0.43%. Corresponding to the decrease of ecosystem services, the ecological risk was higher in the south and north of the UANSTM and lower in the northwestern, central, and eastern regions. The proportion of ecological high-risk areas was expanding. The key to the relationship between ecological risks and ecosystem services is the change in hydrological conditions. Therefore, we suggest that the UANSTM actively transforms the development and use mode of water resources and coordinates their allocation, aiming to reduce regional ecological risks and optimize the pattern of ecosystem services

    Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs

    Get PDF
    The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct annotation is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3-prime untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3-prime polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental dataComment: 44 pages, 9 figure

    Identification of microRNAs specific for epithelial cell adhesion molecule-positive tumor cells in hepatocellular carcinoma: HEPATOLOGY, Vol. XX, No. X, 2015

    Get PDF
    Therapies that target cancer stem cells (CSCs) hold promise in eliminating cancer burden. However, normal stem cells are likely to be targeted due to their similarities to CSCs. It is established that EpCAM is a biomarker for normal hepatic stem cells and EpCAM+AFP+ hepatocellular carcinoma (HCC) cells have enriched hepatic CSCs. We sought to determine if specific miRNAs exist in hepatic CSCs that are not expressed in normal hepatic stem cells. We performed a pair-wised comparison of the miRNA transcriptome of EpCAM+ and corresponding EpCAM− cells isolated from two primary HCC specimens, as well as from two fetal livers and three healthy adult liver donors via small RNA deep sequencing. We found that miR-150, miR-155 and miR-223 were preferentially highly expressed in EpCAM+ HCC cells, which was further validated. Their gene surrogates, identified using miRNA and mRNA profiling in a cohort of 292 HCC patients, were associated with patient prognosis. We further demonstrated that miR-155 was highly expressed in EpCAM+ HCC cells compared to corresponding EpCAM− HCC cells, fetal livers with enriched normal hepatic progenitors, and normal adult livers with enriched mature hepatocytes. Suppressing miR-155 resulted in a decreased EpCAM+ fraction in HCC cells and reduced HCC cell colony formation, migration and invasion in vitro. The reduced levels of identified miR-155 targets predicted the shortened overall survival and time to recurrence of HCC patients. Conclusion: MiR-155 was highly elevated in EpCAM+ HCC cells and might serve as a molecular target to eradicate the EpCAM+ CSC population in human HCCs

    Food Security Review Based on Bibliometrics from 1991 to 2021

    No full text
    Food security is related to human wellbeing and sustainable development and an important guarantee for world peace. In the context of global climate change, increased food demand, resource depletion, conflicts, and frequent public health emergencies, food security is widely seen as one of the top challenges. Food security research has obvious interdisciplinary characteristics, involving a wide range of fields. We analyzed the literature on food security in the Web of Science core collection from 1991 to 2021, using bibliometric methods with the aid of the Biblioshiny software package. By collecting, screening, analyzing, and visually expressing the literature data, the following conclusions were drawn: (1) In the past 30 years, the annual number of publications on food security increased. The period can be divided into three stages: 1991–2003 as the budding period, 2004–2012 as the development period, and 2013–2020 as the high-yield and active period. The top three journals discussing food security issues are Food Security, Sustainability, and Food Policy, and these journals focus on the publication of comprehensive views from interdisciplinary perspectives. (2) Studies on food security cover 138 countries or regions. The top three countries in terms of the number of published articles are the United States, the United Kingdom, and China. Among the top 20 countries in terms of the number of published articles, European countries are highlighted. (3) Climate change, food security, agriculture, policy, and management are the other high-frequency keywords in the field of food security; climate change occurred 321 times. The word sub-Saharan Africa also occurred more frequently, indicating that food security in sub-Saharan Africa has attracted wide attention. (4) The food security theme mapping clearly showed the research status and future development trends of various topics in the field. Currently, food production, climate change, and sustainable development are the most popular themes. Research on food sovereignty, ecological agriculture, child obesity, and other aspects is an emerging field. (5) We predict that in the future, the field of food security may focus on the expansion and improvement of the food security evaluation system, the balance between sustainable development and food security goals, the improvement of agricultural production and management efficiency, and the research on government policies and strategies. Our results provide a reference for grasping the current situation, key research direction, and development trend in the field of food security

    Adaptive Ant Colony Optimization with Sub-Population and Fuzzy Logic for 3D Laser Scanning Path Planning

    No full text
    For the precise measurement of complex surfaces, determining the position, direction, and path of a laser sensor probe is crucial before obtaining exact measurements. Accurate surface measurement hinges on modifying the overtures of a laser sensor and planning the scan path of the point laser displacement sensor probe to optimize the alignment of its measurement velocity and accuracy. This manuscript proposes a 3D surface laser scanning path planning technique that utilizes adaptive ant colony optimization with sub-population and fuzzy logic (SFACO), which involves the consideration of the measurement point layout, probe attitude, and path planning. Firstly, this study is based on a four-coordinate measuring machine paired with a point laser displacement sensor probe. The laser scanning four-coordinate measuring instrument is used to establish a coordinate system, and the relationship between them is transformed. The readings of each axis of the object being measured under the normal measuring attitude are then reversed through the coordinate system transformation, thus resulting in the optimal measuring attitude. The nominal distance matrix, which demonstrates the significance of the optimal measuring attitude, is then created based on the readings of all the points to be measured. Subsequently, a fuzzy ACO algorithm that integrates multiple swarm adaptive and dynamic domain structures is suggested to enhance the algorithm’s performance by refining and utilizing multiple swarm adaptive and fuzzy operators. The efficacy of the algorithm is verified through experiments with 13 popular TSP benchmark datasets, thereby demonstrating the complexity of the SFACO approach. Ultimately, the path planning problem of surface 3D laser scanning measurement is addressed by employing the proposed SFACO algorithm in conjunction with a nominal distance matrix

    Application Research of Frequency-Modulated Continuous-Wave Displacement Sensor Based on Zero-Crossing Phase Detecting Algorithm

    No full text
    Frequency-modulated continuous-wave (FMCW) interference, as a new technology of laser interferometry, has the advantages of length traceability, large range, high accuracy, simple structure, and optical fiber transmission. Based on the formula of FMCW laser interference displacement, a zero-crossing phase detection algorithm is proposed, which can accurately calculate the initial phase of a cosine signal in a modulation period, and it is successfully applied to the contact laser interference displacement sensor. The experimental results show that the FMCW technology based on the zero-crossing phase detection algorithm can achieve the technical specifications of the contact displacement sensor with a measurement range greater than 15 mm and the standard deviation is less than 0.01 μm. The conversion of noncontact measurement to contact measurement can realize the direct measurement of workpieces with complex surface conditions on the production line, breaking through the limitation of optical measurement and expanding the application of optical fiber interferometry

    Increasing the Fine Flaky Graphite Recovery in Flotation via a Combined MultipleTreatments Technique of Middlings

    No full text
    As the residual flaky graphite ores become miscellaneous and fine, a single treatment technique for the middlings from the flotation process of graphite ore cannot efficiently recover the valuable graphite in the multistage grinding-flotation technology. In the study, the existence form of graphite and relationship of graphite with the associated gangue minerals were estimated by optical microscope analysis. The results indicated that the fine flaky graphite particles embedded with gangue minerals like a honeycomb, making it difficult to be beneficiated using the typical flotation technique. A combination technique of individual process and concentrated returning for the treatment of middlings was used to increase the graphite recovery based on the co-existing relationship between graphite and gangue minerals in the middlings. The graphite recovery of the final concentrate upgraded from 51.81% to 91.14% at a fixed carbon (FC) content of 92.01% by a beneficiation process consisted of once coarse (94.41% passing 74 μm) and rougher, five stages regrinding and six stages cleaning. The proposed treatment technique for middlings is of great significance to increase the recovery of fine flaky graphite

    Research on absolute ranging technology of resampling phase comparison method based on FMCW

    No full text
    As an advanced optical precision ranging method, FMCW (frequency-modulated continuous-wave) laser interferometric ranging technology can achieve a large-scale and high-precision absolute distance measurement, so it has high research and application value in the field of coordinate measurement in large space. How to improve the resolution and stability of laser interferometry is a research difficulty in this technology. Based on FMCW laser interferometry relative distance technology, a method for achieving absolute distance measurement through phase comparison after repeated sampling is proposed. Using the FMCW laser distance measuring system, two interference optical paths of measuring interferometer and auxiliary interferometer are constructed, respectively. Synchronous sampling is performed on two interference signals, and the phase ratio of the two interference signals is obtained through the extracted frequency information. The optical path difference of the unknown measurement interferometer is derived from the known auxiliary interferometer information. This method uses a triangular wave modulation laser to reduce the influence of Doppler frequency shift and eliminate quantization errors. By using the fixed-point repeated sampling, the optical path difference information is quickly extracted, and the nonlinear error of laser interference frequency modulation is effectively reduced
    corecore