5 research outputs found

    Exposure Patterns Driving Ebola Transmission in West Africa:A Retrospective Observational Study

    Get PDF
    BackgroundThe ongoing West African Ebola epidemic began in December 2013 in Guinea, probably from a single zoonotic introduction. As a result of ineffective initial control efforts, an Ebola outbreak of unprecedented scale emerged. As of 4 May 2015, it had resulted in more than 19,000 probable and confirmed Ebola cases, mainly in Guinea (3,529), Liberia (5,343), and Sierra Leone (10,746). Here, we present analyses of data collected during the outbreak identifying drivers of transmission and highlighting areas where control could be improved.Methods and findingsOver 19,000 confirmed and probable Ebola cases were reported in West Africa by 4 May 2015. Individuals with confirmed or probable Ebola ("cases") were asked if they had exposure to other potential Ebola cases ("potential source contacts") in a funeral or non-funeral context prior to becoming ill. We performed retrospective analyses of a case line-list, collated from national databases of case investigation forms that have been reported to WHO. These analyses were initially performed to assist WHO's response during the epidemic, and have been updated for publication. We analysed data from 3,529 cases in Guinea, 5,343 in Liberia, and 10,746 in Sierra Leone; exposures were reported by 33% of cases. The proportion of cases reporting a funeral exposure decreased over time. We found a positive correlation (r = 0.35, p ConclusionsAchieving elimination of Ebola is challenging, partly because of super-spreading. Safe funeral practices and fast hospitalisation contributed to the containment of this Ebola epidemic. Continued real-time data capture, reporting, and analysis are vital to track transmission patterns, inform resource deployment, and thus hasten and maintain elimination of the virus from the human population

    After Ebola in West Africa — unpredictable risks, preventable epidemics

    Get PDF
    Between December 2013 and April 2016, the largest epidemic of Ebola virus disease (EVD) to date generated more than 28,000 cases and more than 11,000 deaths in the large, mobile populations of Guinea, Liberia, and Sierra Leone. Tracking the rapid rise and slower decline of the West African epidemic has reinforced some common understandings about the epidemiology and control of EVD but has also generated new insights. Despite having more information about the geographic distribution of the disease, the risk of human infection from animals and from survivors of EVD remains unpredictable over a wide area of equatorial Africa. Until human exposure to infection can be anticipated or avoided, future outbreaks will have to be managed with the classic approach to EVD control — extensive surveillance, rapid detection and diagnosis, comprehensive tracing of contacts, prompt patient isolation, supportive clinical care, rigorous efforts to prevent and control infection, safe and dignified burial, and engagement of the community. Empirical and modeling studies conducted during the West African epidemic have shown that large epidemics of EVD are preventable — a rapid response can interrupt transmission and restrict the size of outbreaks, even in densely populated cities. The critical question now is how to ensure that populations and their health services are ready for the next outbreak, wherever it may occur. Health security across Africa and beyond depends on committing resources to both strengthen national health systems and sustain investment in the next generation of vaccines, drugs, and diagnostics
    corecore