46 research outputs found

    Joint Cuts and Matching of Partitions in One Graph

    Full text link
    As two fundamental problems, graph cuts and graph matching have been investigated over decades, resulting in vast literature in these two topics respectively. However the way of jointly applying and solving graph cuts and matching receives few attention. In this paper, we first formalize the problem of simultaneously cutting a graph into two partitions i.e. graph cuts and establishing their correspondence i.e. graph matching. Then we develop an optimization algorithm by updating matching and cutting alternatively, provided with theoretical analysis. The efficacy of our algorithm is verified on both synthetic dataset and real-world images containing similar regions or structures

    Mind the Label Shift of Augmentation-based Graph OOD Generalization

    Full text link
    Out-of-distribution (OOD) generalization is an important issue for Graph Neural Networks (GNNs). Recent works employ different graph editions to generate augmented environments and learn an invariant GNN for generalization. However, the label shift usually occurs in augmentation since graph structural edition inevitably alters the graph label. This brings inconsistent predictive relationships among augmented environments, which is harmful to generalization. To address this issue, we propose \textbf{LiSA}, which generates label-invariant augmentations to facilitate graph OOD generalization. Instead of resorting to graph editions, LiSA exploits \textbf{L}abel-\textbf{i}nvariant \textbf{S}ubgraphs of the training graphs to construct \textbf{A}ugmented environments. Specifically, LiSA first designs the variational subgraph generators to extract locally predictive patterns and construct multiple label-invariant subgraphs efficiently. Then, the subgraphs produced by different generators are collected to build different augmented environments. To promote diversity among augmented environments, LiSA further introduces a tractable energy-based regularization to enlarge pair-wise distances between the distributions of environments. In this manner, LiSA generates diverse augmented environments with a consistent predictive relationship and facilitates learning an invariant GNN. Extensive experiments on node-level and graph-level OOD benchmarks show that LiSA achieves impressive generalization performance with different GNN backbones. Code is available on \url{https://github.com/Samyu0304/LiSA}.Comment: Accepted to CVPR 2023. arXiv admin note: text overlap with arXiv:2206.0934

    Generative Explanations for Graph Neural Network: Methods and Evaluations

    Full text link
    Graph Neural Networks (GNNs) achieve state-of-the-art performance in various graph-related tasks. However, the black-box nature often limits their interpretability and trustworthiness. Numerous explainability methods have been proposed to uncover the decision-making logic of GNNs, by generating underlying explanatory substructures. In this paper, we conduct a comprehensive review of the existing explanation methods for GNNs from the perspective of graph generation. Specifically, we propose a unified optimization objective for generative explanation methods, comprising two sub-objectives: Attribution and Information constraints. We further demonstrate their specific manifestations in various generative model architectures and different explanation scenarios. With the unified objective of the explanation problem, we reveal the shared characteristics and distinctions among current methods, laying the foundation for future methodological advancements. Empirical results demonstrate the advantages and limitations of different explainability approaches in terms of explanation performance, efficiency, and generalizability

    A Review on Quantum Dot‐Based Color Conversion Layers for Mini/Micro‐LED Displays: Packaging, Light Management, and Pixelation

    Get PDF
    Mini/microlight-emitting diodes (LEDs) are one of the most promising technologies for next-generation displays to meet the requirements of demanding applications, including augmented reality/virtual reality displays, wearable devices, and microprojectors. To realize full-color displays, the strategy of combining miniaturized blue nitride-based LEDs with color conversion layers is promising due to the high efficiencies of the LEDs and the advantageous manufacturing. Quantum dots (QDs), owing to their high photoluminescence quantum yield, small particle size, and solution processability, have emerged as the color conversion material with the most potential for mini/micro-LEDs. However, the integration of QDs into display technologies poses several challenges. From the material side, the stability of QD materials is still challenging. For the case of packaging QDs in a matrix, the dispersion quality of QDs and the light extraction of the emission need to be improved. From the fabrication side, the lack of high-precision mass manufacturing strategies in QD pixelation hinders the widespread application of QDs. Toward the issues above, this review summarizes the research on QD materials for color conversion display in recent years to systematically draw an overview of the packaging strategies, the light management approaches, and the pixelation methods of QD materials toward mini/micro-LED-based display technologies

    Rumor Detection with Diverse Counterfactual Evidence

    Full text link
    The growth in social media has exacerbated the threat of fake news to individuals and communities. This draws increasing attention to developing efficient and timely rumor detection methods. The prevailing approaches resort to graph neural networks (GNNs) to exploit the post-propagation patterns of the rumor-spreading process. However, these methods lack inherent interpretation of rumor detection due to the black-box nature of GNNs. Moreover, these methods suffer from less robust results as they employ all the propagation patterns for rumor detection. In this paper, we address the above issues with the proposed Diverse Counterfactual Evidence framework for Rumor Detection (DCE-RD). Our intuition is to exploit the diverse counterfactual evidence of an event graph to serve as multi-view interpretations, which are further aggregated for robust rumor detection results. Specifically, our method first designs a subgraph generation strategy to efficiently generate different subgraphs of the event graph. We constrain the removal of these subgraphs to cause the change in rumor detection results. Thus, these subgraphs naturally serve as counterfactual evidence for rumor detection. To achieve multi-view interpretation, we design a diversity loss inspired by Determinantal Point Processes (DPP) to encourage diversity among the counterfactual evidence. A GNN-based rumor detection model further aggregates the diverse counterfactual evidence discovered by the proposed DCE-RD to achieve interpretable and robust rumor detection results. Extensive experiments on two real-world datasets show the superior performance of our method. Our code is available at https://github.com/Vicinity111/DCE-RD

    Localized Contrastive Learning on Graphs

    Full text link
    Contrastive learning methods based on InfoNCE loss are popular in node representation learning tasks on graph-structured data. However, its reliance on data augmentation and its quadratic computational complexity might lead to inconsistency and inefficiency problems. To mitigate these limitations, in this paper, we introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL in short). Local-GCL consists of two key designs: 1) We fabricate the positive examples for each node directly using its first-order neighbors, which frees our method from the reliance on carefully-designed graph augmentations; 2) To improve the efficiency of contrastive learning on graphs, we devise a kernelized contrastive loss, which could be approximately computed in linear time and space complexity with respect to the graph size. We provide theoretical analysis to justify the effectiveness and rationality of the proposed methods. Experiments on various datasets with different scales and properties demonstrate that in spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties

    Recent Progress in Light‐Scattering Porous Polymers and Their Applications

    Get PDF
    Conventional inorganic-nanoparticles-based scattering systems have dominated many practical applications for years. In contrast, the rise of porous polymers is perceived as a game-changer due to their low cost, facile preparation, and great abundance. One challenging issue to be tackled is the design and fabrication of porous polymers with light-scattering properties comparable to those of inorganic nanoparticles. Taking inspiration from nature (e.g., from white beetles Cyphochilus), scientists have achieved remarkable progress in the field of light-scattering porous polymers and their related applications in recent years. Therefore, here, an up-to-date review about this emerging field is provided. This overview covers materials for making porous polymer structures, detailed fabrication methods, and applications benefitting from their tailorable light-scattering properties. It is envisioned that more bioinspired light-scattering porous polymers will be made to be potential alternatives of conventional nanoparticles-based scatterers

    ScoreMix: A Scalable Augmentation Strategy for Training GANs with Limited Data

    Full text link
    Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available. To facilitate GAN training, current methods propose to use data-specific augmentation techniques. Despite the effectiveness, it is difficult for these methods to scale to practical applications. In this work, we present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks. We first produce augmented samples using the convex combinations of the real samples. Then, we optimize the augmented samples by minimizing the norms of the data scores, i.e., the gradients of the log-density functions. This procedure enforces the augmented samples close to the data manifold. To estimate the scores, we train a deep estimation network with multi-scale score matching. For different image synthesis tasks, we train the score estimation network using different data. We do not require the tuning of the hyperparameters or modifications to the network architecture. The ScoreMix method effectively increases the diversity of data and reduces the overfitting problem. Moreover, it can be easily incorporated into existing GAN models with minor modifications. Experimental results on numerous tasks demonstrate that GAN models equipped with the ScoreMix method achieve significant improvements
    corecore