46 research outputs found

    Comyco: Quality-Aware Adaptive Video Streaming via Imitation Learning

    Full text link
    Learning-based Adaptive Bit Rate~(ABR) method, aiming to learn outstanding strategies without any presumptions, has become one of the research hotspots for adaptive streaming. However, it typically suffers from several issues, i.e., low sample efficiency and lack of awareness of the video quality information. In this paper, we propose Comyco, a video quality-aware ABR approach that enormously improves the learning-based methods by tackling the above issues. Comyco trains the policy via imitating expert trajectories given by the instant solver, which can not only avoid redundant exploration but also make better use of the collected samples. Meanwhile, Comyco attempts to pick the chunk with higher perceptual video qualities rather than video bitrates. To achieve this, we construct Comyco's neural network architecture, video datasets and QoE metrics with video quality features. Using trace-driven and real-world experiments, we demonstrate significant improvements of Comyco's sample efficiency in comparison to prior work, with 1700x improvements in terms of the number of samples required and 16x improvements on training time required. Moreover, results illustrate that Comyco outperforms previously proposed methods, with the improvements on average QoE of 7.5% - 16.79%. Especially, Comyco also surpasses state-of-the-art approach Pensieve by 7.37% on average video quality under the same rebuffering time.Comment: ACM Multimedia 201

    Preparation and thermophysical properties of graphite flake-carbon fiber coreinforced copper matrix composites

    No full text
    Graphite flake-carbon fiber coreinforced copper matrix composites were prepared by vacuum hot pressing technology. The carbon fibers were dispersed ultrasonic in alcohol and then mixed with graphite flake and alloys powder (Zr and Cu) for hot pressing sintering. The effects of the carbon fiber content on the microstructure, bending strength and thermal conductivity of the composites were investigated. The results show that the interface of the composites is well bonded. When the volume fraction of carbon fiber is 1%–3%, the carbon fiber can be uniformly dispersed in the matrix, and the bending strength of the composites can be improved effectively. When the volume fraction of carbon fiber is 2%, the bending strength reaches a maximum of 152 MPa, which is an increase of 60% compared with that of the composites without carbon fiber. However, an excessive addition of carbon fiber (4% or more) leads to an uneven distribution of carbon fiber, and the bending strength of the composites decreases. When the volume fraction of carbon fiber is 2%, the thermal conductivity of the composite is 597 W·m ^−1 ·K ^−1 . The acoustic mismatch model (AMM) associated with the Digimat MF module is able to predict the thermal conductivity of the anisotropic multiphase composites

    A Multifaceted Kinetic Model for the Thermal Decomposition of Calcium Carbonate

    No full text
    The existing kinetic models often consider the influence of a single factor alone on the chemical reaction and this is insufficient to completely describe the decomposition reaction of solids. Therefore, the existing kinetic models were improved using the pore structure model. The proposed model was verified using the thermal decomposition experiment on calcium carbonate. The equation has been modified as fα=n1−α1−1n−ln1−α−1m1−ψln1−α12. This led to the conclusion that the pore structure, generated during the thermal decomposition of calcite, has an important influence on the decomposition kinetics. The existing experimental data show that the improved model, with random pores as the main body, reasonably describes the thermal decomposition process of calcite

    Dynamic Characteristic and Fatigue Accumulative Damage of a Cross Shield Tunnel Structure under Vibration Load

    No full text
    This study presents an improved constitutive model for concrete under uniaxial cyclic loading which considers the fatigue stiffness degradation, fatigue strength degradation, and fatigue residual strain increment of concrete fatigue damage. According to the constitutive model, the dynamic response and cumulative damage of the tunnel cross structure under various train operation years were analyzed. The results show that the vibration in the middle of the main tunnel is most violent. With the increase of train operation period, the acceleration in the middle of the transverse passage floor, both sides of the wall corner and the vault increase significantly, and the maximum principal stress increases significantly only in both sides of the wall corner. The compressive damage is mainly distributed at both sides of the wall corner, while tensile damage is distributed in both sides of the inner wall corner. The accumulative damage of the cross structure exhibits a two-stage profile. The size and range of accumulative tensile damage of the connecting transverse passage are greater than those of accumulative compressive damage

    A 3D Interferometer-Type Lightning Mapping Array for Observation of Winter Lightning in Japan

    No full text
    We have developed and deployed a 3D Interferometer-type Lightning Mapping Array (InLMA) for observing winter lightning in Japan. InLMA consists of three broadband interferometers installed at three stations with a distance from 3 to 5 km. At each interferometer station, three discone antennas were installed, forming a right triangle with a separation of 75 m along their two orthogonal baselines. The output of each InLMA antenna is passed through a 400 MHz low-pass filter and then recorded at 1 GS/s with 16-bit accuracy. A new method has been proposed for finding 3D solutions of a lightning mapping system that consists of multiple interferometers. Using the InLMA, we have succeeded in mapping a positive cloud-to-ground (CG) lightning flash in winter, particularly its preliminary breakdown (PB) process. A study on individual PB pulse processes allows us to infer that each PB pulse process contains many small-scale discharges scattering in a height range of about 150 m. These small-scale discharges in a series of PB pulses appear to be continuous in space, though discontinuous in time. We have also examined the positive return stroke in the CG flash and found a 3D average return stroke speed of 7.5 × 107 m/s

    Boosting CdS Photocatalytic Activity for Hydrogen Evolution in Formic Acid Solution by P Doping and MoS2 Photodeposition

    No full text
    Formic acid is an appealing hydrogen storage material. In order to rapidly produce hydrogen from formic acid under relatively mild conditions, high-efficiency and stable photocatalytic systems are of great significance to prompt hydrogen (H2) evolution from formic acid. In this paper, an efficient and stable photocatalytic system (CdS/P/MoS2) for H2 production from formic acid is successfully constructed by elemental P doping of CdS nanorods combining with in situ photodeposition of MoS2. In this system, P doping reduces the band gap of CdS for enhanced light absorption, as well as promoting the separation of photogenerated charge carriers. More importantly, MoS2 nanoparticles decorated on P-doped CdS nanorods can play as noble-metal-free cocatalysts, which increase the light adsorption, facilitate the charge transfer and effectively accelerate the hydrogen evolution reaction. Consequently, the apparent quantum efficiency (AQE) of the designed CdS/P/MoS2 is up to 6.39% at 420 nm, while the H2 evolution rate is boosted to 68.89 mmol·g−1·h−1, which is 10 times higher than that of pristine CdS. This study could provide an alternative strategy for the development of competitive CdS-based photocatalysts as well as noble-metal-free photocatalytic systems toward efficient hydrogen production

    A molten carbonate shell modified perovskite redox catalyst for anaerobic oxidative dehydrogenation of ethane

    No full text
    Acceptor-doped, redox-active perovskite oxides such as La0.8Sr0.2FeO3 (LSF) are active for ethane oxidation to CO X but show poor selectivity to ethylene. This article reports molten Li2CO3 as an effective "promoter" to modify LSF for chemical looping-oxidative dehydrogenation (CL-ODH) of ethane. Under the working state, the redox catalyst is composed of a molten Li2CO3 layer covering the solid LSF substrate. The molten layer facilitates the transport of active peroxide (O-2(2-)) species formed on LSF while blocking the nonselective sites. Spectroscopy measurements and density functional theory calculations indicate that Fe4+ -> Fe3+ transition is responsible for the peroxide formation, which results in both exothermic ODH and air reoxidation steps. With >90% ethylene selectivity, up to 59% ethylene yield, and favorable heat of reactions, the core-shell redox catalyst has an excellent potential to be effective for intensified ethane conversion. The mechanistic findings also provide a generalized approach for designing CL-ODH redox catalysts
    corecore