12 research outputs found

    Determination of beam incidence conditions based on the analysis of laser interference patterns

    Get PDF
    Beam incidence conditions in the formation of two-, three- and four-beam laser interference patterns are presented and studied in this paper. In a laser interference lithography (LIL) process, it is of importance to determine and control beam incidence conditions based on the analysis of laser interference patterns for system calibration as any slight change of incident angles or intensities of beams will introduce significant variations of periods and contrasts of interference patterns. In this work, interference patterns were captured by a He-Ne laser interference system under different incidence conditions, the pattern period measurement was achieved by cross-correlation with, and the pattern contrast was calculated by image processing. Subsequently, the incident angles and intensities of beams were determined based on the analysis of spatial distributions of interfering beams. As a consequence, the relationship between the beam incidence conditions and interference patterns is revealed. The proposed method is useful for the calibration of LIL processes and for reverse engineering applications

    An insight into the causal relationship between sarcopenia-related traits and venous thromboembolism: A mendelian randomization study.

    No full text
    BackgroundAs a geriatric syndrome, sarcopenia has a high prevalence in the old population and represents an impaired state of health with adverse health outcomes. A strong clinical interest in its relationship with venous thromboembolism (VTE), which is a complex trait disease with a heterogeneous annual incidence rate in different countries, has emerged. The relationship between sarcopenia and venous thromboembolism has been reported in observational studies but the causality from sarcopenia to VTE remained unclarified. We aimed to assess the causal effect of sarcopenia on the risk of VTE with the two-sample Mendelian randomization (MR) method.MethodsTwo sets of single-nucleotide polymorphisms (SNPs), derived from two published genome-wide association study (GWAS) meta-analyses and genetically indexing muscle weakness and lean muscle mass separately, were pooled into inverse variance weighted (IVW), weighted median and MR-Egger analyses.ResultsNo evidence was found for the causal effect of genetically predicted muscle weakness (IVW: OR = 0.90, 95% CI = 0.76-1.06, p = 0.217), whole body lean mass (IVW: OR = 1.01, 95% CI = 0.87-1.17, p = 0.881) and appendicular lean mass (IVW: OR = 1.13, 95% CI = 0.82-1.57, p = 0.445) on the risk of VTE. However, both genetically predicted whole-body lean mass and appendicular lean mass can causally influence diabetes mellitus (IVW of whole-body lean mass: OR = 0.87, 95% CI = 0.78-0.96, p = 0.008; IVW of appendicular lean mass: OR = 0.71, 95% CI = 0.54-0.94, p = 0.014) and hypertension (IVW of whole-body lean mass: OR = 0.92, 95% CI = 0.87-0.98, p = 0.007; IVW of appendicular lean mass: OR = 0.84, 95% CI = 0.73-0.96, p = 0.013).ConclusionsGenetically predicted sarcopenia does not causally influence VTE directly, but it might still have an indirect effect on VTE incidence via diabetes mellitus and hypertension

    PtNi-W/C with Atomically Dispersed Tungsten Sites Toward Boosted ORR in Proton Exchange Membrane Fuel Cell Devices

    No full text
    Highlights A hybrid electrocatalyst consisting of PtNi-W alloy nanocrystals loaded on carbon surface with atomically dispersed W sites was realized. Single-atomic W formed protonic acid sites and established an extended proton transport network at the catalyst surface. Peak power density is enhanced by 64.4% compared to that with the commercial Pt/C catalyst in fuel cell as cathode at ultra-low loading of 0.05 mgPt cm−2

    Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism

    No full text
    Room-temperature sodium-sulfur batteries have significant potential for large-scale applications due to the low cost and high energy density of both sulfur and sodium. Nevertheless, the insulating nature of sulfur and the shuttle effect are impeding their practical application. Here we report that dispersed single-atom Fe sites anchored on a nitrogen-doped carbon matrix present an atomic-level strategy for the development of sulfur hosts. The electronic structure of sulfur is modified by the atomically dispersed Fe-N4 sites, which can transfer the electron to sulfur, thereby enhancing its reactivity. The S@Fe1-NMC cathode delivers a high reversible capacity of 1,650 mAh g−1 initially and 540 mAh g−1 after 500 cycles at 100 mA g−1. A dual function mechanism is observed on S-Fe-N4 sites, which can activate the polysulfides by weakening the S-S bonds and accelerate Na+ diffusion into Na-poor regions to engender a high driving force for Na2Sx decomposition, thus inhibiting the shuttle effect

    Structural basis for receptor binding and broader interspecies receptor recognition of currently circulating Omicron sub-variants

    No full text
    Abstract Multiple SARS-CoV-2 Omicron sub-variants, such as BA.2, BA.2.12.1, BA.4, and BA.5, emerge one after another. BA.5 has become the dominant strain worldwide. Additionally, BA.2.75 is significantly increasing in some countries. Exploring their receptor binding and interspecies transmission risk is urgently needed. Herein, we examine the binding capacities of human and other 28 animal ACE2 orthologs covering nine orders towards S proteins of these sub-variants. The binding affinities between hACE2 and these sub-variants remain in the range as that of previous variants of concerns (VOCs) or interests (VOIs). Notably, R493Q reverse mutation enhances the bindings towards ACE2s from humans and many animals closely related to human life, suggesting an increased risk of cross-species transmission. Structures of S/hACE2 or RBD/hACE2 complexes for these sub-variants and BA.2 S binding to ACE2 of mouse, rat or golden hamster are determined to reveal the molecular basis for receptor binding and broader interspecies recognition
    corecore