29 research outputs found

    DISPENSABLE ROLE OF AIRE IN cDCs

    Get PDF
    Aire, the defect of which is responsible for the development of autoimmunity, is predominantly expressed in medullary thymic epithelial cells, and it controls a wide variety of genes, including those of tissue-restricted Ags, for establishing thymic tolerance. Aire is also expressed from APCs in the periphery, called extrathymic Aire-expressing cells (eTACs), and their complementing role to thymic tolerance has been suggested. eTACs are composed of two distinct classes of APCs, conventional dendritic cell (cDC)–type and group 3 innate lymphoid cell (ILC3)-like–type expressing retinoic acid receptor–related orphan receptor γt (RORγt). Although the essential role of Aire in the latter in the Th17-mediated immune response against Candida albicans has been reported, the role of Aire in the cDC-type eTACs for this action has not been examined. Furthermore, the significance of Aire in the production of the transcriptome of the cDC-type eTACs remains unknown. We have approached these issues using a high-fidelity Aire-reporter mouse strain. We found that although the cDC-type eTACs dominated ILC3-like–type eTACs in number and they served as efficient APCs for the immune response against an exogenous Ag as well as for the C. albicans–specific Th17 immune response, loss of Aire in cDC-type eTACs showed no clear effect on these functions. Furthermore, loss of Aire showed no major impact on the transcriptome from cDC-type eTACs. These results suggested that Aire in cDC-type eTACs may not have a cell-intrinsic role in the immune response in contrast to the role of Aire in ILC3-like–type eTACs

    TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell–derived endothelial cells

    Get PDF
    Recent findings have shown that embryonic vascular progenitor cells are capable of differentiating into mural and endothelial cells. However, the molecular mechanisms that regulate their differentiation, proliferation, and endothelial sheet formation remain to be elucidated. Here, we show that members of the transforming growth factor (TGF)-β superfamily play important roles during differentiation of vascular progenitor cells derived from mouse embryonic stem cells (ESCs) and from 8.5–days postcoitum embryos. TGF-β and activin inhibited proliferation and sheet formation of endothelial cells. Interestingly, SB-431542, a synthetic molecule that inhibits the kinases of receptors for TGF-β and activin, facilitated proliferation and sheet formation of ESC-derived endothelial cells. Moreover, SB-431542 up-regulated the expression of claudin-5, an endothelial specific component of tight junctions. These results suggest that endogenous TGF-β/activin signals play important roles in regulating vascular growth and permeability

    Impurity emission characteristics of long pulse discharges in Large Helical Device

    Get PDF
    Line spectra from intrinsic impurity ions have been monitored during the three kinds of long-pulse discharges (ICH, ECH, NBI). Constant emission from the iron impurity shows no preferential accumulation of iron ion during the long-pulse operations. Stable Doppler ion temperature has been also measured from Fe XX, C V and C III spectra

    Gas Flow Velocity of the Direct Gas Puff

    No full text
    Gas flow velocity of a piezo-valve used in the Large Helical Device has been measured in a test chamber of 3.6 m long. Various gasses of hydrogen, helium, methane, neon, nitrogen and argon are used in the experiment. In the direct gas puff configuration, where the gas flow directly reaches the target, the Mach number increases with the mass of the gas molecule and/or the primary pressure of the piezo-valve. The maximum Mach number of over 1.5 is obtained with the methane. In the normal gas puff configuration, where the injected gas suffers from reflection and/or absorption by materials, the gas flow velocity remains at sound velocity, even with the methane

    C 60

    No full text
    corecore