10,981 research outputs found

    Sequential Selection of Correlated Ads by POMDPs

    Full text link
    Online advertising has become a key source of revenue for both web search engines and online publishers. For them, the ability of allocating right ads to right webpages is critical because any mismatched ads would not only harm web users' satisfactions but also lower the ad income. In this paper, we study how online publishers could optimally select ads to maximize their ad incomes over time. The conventional offline, content-based matching between webpages and ads is a fine start but cannot solve the problem completely because good matching does not necessarily lead to good payoff. Moreover, with the limited display impressions, we need to balance the need of selecting ads to learn true ad payoffs (exploration) with that of allocating ads to generate high immediate payoffs based on the current belief (exploitation). In this paper, we address the problem by employing Partially observable Markov decision processes (POMDPs) and discuss how to utilize the correlation of ads to improve the efficiency of the exploration and increase ad incomes in a long run. Our mathematical derivation shows that the belief states of correlated ads can be naturally updated using a formula similar to collaborative filtering. To test our model, a real world ad dataset from a major search engine is collected and categorized. Experimenting over the data, we provide an analyse of the effect of the underlying parameters, and demonstrate that our algorithms significantly outperform other strong baselines

    Real-time Bidding for Online Advertising: Measurement and Analysis

    Get PDF
    The real-time bidding (RTB), aka programmatic buying, has recently become the fastest growing area in online advertising. Instead of bulking buying and inventory-centric buying, RTB mimics stock exchanges and utilises computer algorithms to automatically buy and sell ads in real-time; It uses per impression context and targets the ads to specific people based on data about them, and hence dramatically increases the effectiveness of display advertising. In this paper, we provide an empirical analysis and measurement of a production ad exchange. Using the data sampled from both demand and supply side, we aim to provide first-hand insights into the emerging new impression selling infrastructure and its bidding behaviours, and help identifying research and design issues in such systems. From our study, we observed that periodic patterns occur in various statistics including impressions, clicks, bids, and conversion rates (both post-view and post-click), which suggest time-dependent models would be appropriate for capturing the repeated patterns in RTB. We also found that despite the claimed second price auction, the first price payment in fact is accounted for 55.4% of total cost due to the arrangement of the soft floor price. As such, we argue that the setting of soft floor price in the current RTB systems puts advertisers in a less favourable position. Furthermore, our analysis on the conversation rates shows that the current bidding strategy is far less optimal, indicating the significant needs for optimisation algorithms incorporating the facts such as the temporal behaviours, the frequency and recency of the ad displays, which have not been well considered in the past.Comment: Accepted by ADKDD '13 worksho

    A dynamic pricing model for unifying programmatic guarantee and real-time bidding in display advertising

    Full text link
    There are two major ways of selling impressions in display advertising. They are either sold in spot through auction mechanisms or in advance via guaranteed contracts. The former has achieved a significant automation via real-time bidding (RTB); however, the latter is still mainly done over the counter through direct sales. This paper proposes a mathematical model that allocates and prices the future impressions between real-time auctions and guaranteed contracts. Under conventional economic assumptions, our model shows that the two ways can be seamless combined programmatically and the publisher's revenue can be maximized via price discrimination and optimal allocation. We consider advertisers are risk-averse, and they would be willing to purchase guaranteed impressions if the total costs are less than their private values. We also consider that an advertiser's purchase behavior can be affected by both the guaranteed price and the time interval between the purchase time and the impression delivery date. Our solution suggests an optimal percentage of future impressions to sell in advance and provides an explicit formula to calculate at what prices to sell. We find that the optimal guaranteed prices are dynamic and are non-decreasing over time. We evaluate our method with RTB datasets and find that the model adopts different strategies in allocation and pricing according to the level of competition. From the experiments we find that, in a less competitive market, lower prices of the guaranteed contracts will encourage the purchase in advance and the revenue gain is mainly contributed by the increased competition in future RTB. In a highly competitive market, advertisers are more willing to purchase the guaranteed contracts and thus higher prices are expected. The revenue gain is largely contributed by the guaranteed selling.Comment: Chen, Bowei and Yuan, Shuai and Wang, Jun (2014) A dynamic pricing model for unifying programmatic guarantee and real-time bidding in display advertising. In: The Eighth International Workshop on Data Mining for Online Advertising, 24 - 27 August 2014, New York Cit

    Data Detection and Code Channel Allocation for Frequency-Domain Spread ACO-OFDM Systems Over Indoor Diffuse Wireless Channels

    Get PDF
    Future optical wireless communication systems promise to provide high-speed data transmission in indoor diffuse environments. This paper considers frequency-domain spread asymmetrically clipped optical orthogonal frequency-division multiplexing (ACOOFDM) systems in indoor diffuse channels and aims to develop efficient data detection and code channel allocation schemes. By exploiting the frequency-domain spread concept, a linear multi-code detection scheme is proposed to maximize the signal to interference plus noise ratio (SINR) at the receiver. The achieved SINR and bit error ratio (BER) performance are analyzed. A computationally efficient code channel allocation algorithm is proposed to improve the BER performance of the frequency-domain spread ACO-OFDM system. Numerical results show that the frequency-domain spread ACO-OFDM system outperforms conventional ACO-OFDM systems in indoor diffuse channels. Moreover, the proposed linear multi-code detection and code channel allocation algorithm can improve the performance of optical peak-to-average power ratio (PAPR
    • …
    corecore