314 research outputs found

    Protein synthesis and degradation are required for the incorporation of modified information into the pre-existing object-location memory

    Get PDF
    Although some reports indicate that protein synthesis dependent process may be induced by updating information, the role of protein synthesis and degradation in changing the content of pre-existing memory is yet unclear. In this study, we utilized an object rearrangement task, in which partial information related to a pre-existing memory is changed, promoting memory modification. Inhibitors of both protein synthesis and protein degradation impaired adequate incorporation of the altered information, each in a distinctive way. These results indicate that protein synthesis and degradation play key roles in memory modification

    3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection

    Full text link
    In this paper, we propose a new deep architecture for fusing camera and LiDAR sensors for 3D object detection. Because the camera and LiDAR sensor signals have different characteristics and distributions, fusing these two modalities is expected to improve both the accuracy and robustness of 3D object detection. One of the challenges presented by the fusion of cameras and LiDAR is that the spatial feature maps obtained from each modality are represented by significantly different views in the camera and world coordinates; hence, it is not an easy task to combine two heterogeneous feature maps without loss of information. To address this problem, we propose a method called 3D-CVF that combines the camera and LiDAR features using the cross-view spatial feature fusion strategy. First, the method employs auto-calibrated projection, to transform the 2D camera features to a smooth spatial feature map with the highest correspondence to the LiDAR features in the bird's eye view (BEV) domain. Then, a gated feature fusion network is applied to use the spatial attention maps to mix the camera and LiDAR features appropriately according to the region. Next, camera-LiDAR feature fusion is also achieved in the subsequent proposal refinement stage. The camera feature is used from the 2D camera-view domain via 3D RoI grid pooling and fused with the BEV feature for proposal refinement. Our evaluations, conducted on the KITTI and nuScenes 3D object detection datasets demonstrate that the camera-LiDAR fusion offers significant performance gain over single modality and that the proposed 3D-CVF achieves state-of-the-art performance in the KITTI benchmark

    Ionothermal Synthesis of a Novel 3D Cobalt Coordination Polymer with a Uniquely Reported Framework: [BMI] 2

    Get PDF
    The framework of [RMI]2[Co2(BTC)2(H2O)2] (RMI = 1-alkyl-3-methylimidazolium, alkyl; ethyl (EMI); propyl (PMI); butyl (BMI)), which has uniquely occurred in ionothermal reactions of metal salts and H3BTC (1,3,5-benzenetricarboxylic acid), an organic ligand, reappeared in this work. Ionothermal reaction of cobalt acetate and H3BTC with [BMI]Br ionic liquid as the reaction medium yielded the novel coordination polymer [BMI]2[Co2(BTC)2(H2O)2] (compound B2). Similar ionothermal reactions with different [EMI]Br and [PMI]Br as the reaction media have been previously reported to produce [EMI]2[Co3(BTC)2(OAc)2] (compound A1) and [PMI]2[Co2(BTC)2(H2O)2] (compound B1), respectively. In contrast with the trinuclear secondary building unit of A1, the framework structure of B1 and B2 consists of dinuclear secondary building units in common, but with subtle distinction posed by the different size of the incorporated cations. These structural differences amidst the frameworks showed interesting aspects, including guest and void volume, and were used to explain the chemical trend observed in the system. Moreover, the physicochemical properties of the newly synthesized compound have been briefly discussed

    Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory

    Get PDF
    Newborn neurons in the subgranular zone (SGZ) of the hippocampus incorporate into the dentate gyrus and mature. Numerous studies have focused on hippocampal neurogenesis because of its importance in learning and memory. However, it is largely unknown whether hippocampal neurogenesis is involved in memory extinction per se. Here, we sought to examine the possibility that hippocampal neurogenesis may play a critical role in the formation and extinction of hippocampus-dependent contextual fear memory. By methylazoxymethanol acetate (MAM) or gamma-ray irradiation, hippocampal neurogenesis was impaired in adult mice. Under our experimental conditions, only a severe impairment of hippocampal neurogenesis inhibited the formation of contextual fear memory. However, the extinction of contextual fear memory was not affected. These results suggest that although adult newborn neurons contribute to contextual fear memory, they may not be involved in the extinction or erasure of hippocampus-dependent contextual fear memory

    Postcardiac Injury Syndrome after Percutaneous Coronary Intervention

    Get PDF
    The post cardiac injury syndrome is characterized by the development of a fever, pleuropericarditis, and parenchymal pulmonary infiltrates in the weeks following trauma to the pericardium or myocardium. According to previous reports, almost all cases develop after major cardiac surgery or a myocardial infarction. Recently, a few reports have described post cardiac injury syndrome as a complication of endovascular procedures such as percutaneous cardiac intervention. Here we describe an unusual case of post cardiac injury syndrome after a percutaneous coronary intervention

    The effect of Cs/FA ratio on the long-term stability of mixed cation perovskite solar cells

    Get PDF
    Formamidinium lead iodide (FAPbI3) is ideal for highly efficient and operationally stable perovskite solar cells (PSC). However, a primary challenge for FAPbI3 PSC is to suppress the phase transition from the photoactive black phase into the yellow nonperovskite δ-phase. The preparation of Cs-containing mixed FAPbI3 perovskite by cation stoichiometric engineering is demonstrated and the influence of the Cs/FA ratio on its phase stability and device performance is discussed. By exploring the optimal ratio of Cs and FA cations in Cs x FA1−x Pb(I0.94Br0.06)3 perovskite, an inverted planar device with Cs0.17FA0.83Pb(I0.94Br0.06)3 composition shows the best power conversion efficiency (PCE) of 16.5% in an active area of 1.08 cm2. More importantly, the Cs0.17FA0.83Pb(I0.94Br0.06)3 perovskite photoactive layer showed remarkable long-term stability, maintaining 88.1% of its initial efficiency for 1128 h in the presence of moisture and oxygen and without any encapsulation. The excellent long-term stability is found to originate from the appropriate tolerance factor and low thermodynamic decomposition energy, which underpins the strong potential for the commercialization of Cs-containing mixed FAPbI3 PSCs

    Effects of PI3Kγ overexpression in the hippocampus on synaptic plasticity and spatial learning

    Get PDF
    Previous studies have shown that a family of phosphoinositide 3-kinases (PI3Ks) plays pivotal roles in the brain; in particular, we previously reported that knockout of the γ isoform of PI3K (PI3Kγ) in mice impaired synaptic plasticity and reduced behavioral flexibility. To further examine the role of PI3Kγ in synaptic plasticity and hippocampus-dependent behavioral tasks we overexpressed p110γ, the catalytic subunit of PI3Kγ, in the hippocampal CA1 region. We found that the overexpression of p110γ impairs NMDA receptor-dependent long-term depression (LTD) and hippocampus-dependent spatial learning in the Morris water maze (MWM) task. In contrast, long-term potentiation (LTP) and contextual fear memory were not affected by p110γ overexpression. These results, together with the previous knockout study, suggest that a critical level of PI3Kγ in the hippocampus is required for successful induction of LTD and normal learning
    corecore