94 research outputs found

    Effects of Bt Cotton on Thrips tabaci (Thysanoptera: Thripidae) and Its Predator, Orius insidiosus (Hemiptera: Anthocoridae)

    Get PDF
    Laboratory studies were conducted to investigate tritrophic transfer of insecticidal Cry proteins from transgenic cotton to an herbivore and its predator, and to examine effects of these proteins on the predator's development, survival, and reproduction. Cry1Ac and Cry2Ab proteins from the bacterium Bacillus thuringiensis (Bt) produced in Bollgard-II (BG-II, Event 15985) cotton plants were acquired by Thrips tabaci Lindeman (Thysanoptera: Thripidae), an important sucking pest of cotton, and its generalist predator, Orius insidiosus (Say) (Hemiptera: Anthocoridae). The average protein titers in BG-II cotton leaves were 1,256 and 43,637 ng Cry1Ac and Cry2Ab per gram fresh leaf tissue, respectively. At the second trophic level, larvae of T. tabaci reared on BG-II cotton for 48-96 h had 22.1 and 2.1% of the Cry1Ac and Cry2Ab levels expressed in leaves, respectively. At the third trophic level, O. insidiosus that fed on T. tabaci larvae had 4.4 and 0.3% of the Cry1Ac and Cry2Ab protein levels, respectively, expressed in BG-II plants. O. insidiosus survivorship, time of nymphal development, adult weight, preoviposition and postoviposition periods, fecundity, and adult longevity were not adversely affected owing to consumption of T. tabaci larvae that had fed on BG-II cotton compared with non-Bt cotton. Our results indicate that O. insidiosus, a common predator of T. tabaci, is not harmed by BG-II cotton when exposed to Bt proteins through its prey. Thus, O. insidiosus can continue to provide important biological control services in the cotton ecosystem when BG-II cotton is used to control primary lepidopteran pest

    Using field-evolved resistance to Cry1F maize in a lepidopteran pest to demonstrate no adverse effects of Cry1F on one of its major predators

    Get PDF
    Spodoptera frugiperda (JE Smith) represents the first documented case of field-evolved resistance to a genetically engineered crop expressing an insecticidal protein from Bacillus thuringiensis (Bt). In this case it was Cry1F-expressing maize (Mycogen 2A517). The ladybird beetle, Coleomegilla maculata, is a common and abundant predator that suppresses pest populations in maize and many other cropping systems. Its larvae and adults are polyphagous, feeding on aphids, thrips, lepidopteran eggs and larvae, as well as plant tissues. Thus, C. maculata may be exposed to Bt proteins expressed in genetically engineered crops by several pathways. Using Cry1F-resistant S. frugiperda larvae as prey, we evaluated the potential impact of Cry1F-expressing maize on several fitness parameters of C. maculata over two generations. Using Cry1F resistant prey removed any potential prey-mediated effects. Duration of larval and pupal stages, adult weight and female fecundity of C. maculata were not different when they were fed resistant S. frugiperda larvae reared on either Bt or control maize leaves during both generations. ELISA and insect-sensitive bioassays showed C. maculata were exposed to bioactive Cry1F protein. The insecticidal protein had no effect on C. maculata larvae, even though larvae contained 20-32ng of Cry1F/g by fresh weight. Over all, our results demonstrated that the Cry1F protein did not affect important fitness parameters of one of S. frugiperda's major predators and that Cry1F protein did not accumulate but was strongly diluted when transferred during trophic interaction

    Tri-Trophic Studies Using Cry1Ac-Resistant Plutella xylostella Demonstrate No Adverse Effects of Cry1Ac on the Entomopathogenic Nematode, Heterorhabditis bacteriophora

    Get PDF
    The potential impacts on natural enemies of crops that produce insecticidal Cry proteins from Bacillus thuringiensis (Bt) are an important part of an environmental risk assessment. Entomopathogenic nematodes are important natural enemies of lepidopteran pests, and the effects of Bt crops on these nontarget organisms should be investigated to avoid disruption of their biological control function. The objective of this study was to investigate the effects of Cry1Ac-expressing transgenic Bt broccoli on the entomopathogenic nematode, Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), under tri-trophic conditions. Using Cry1Ac-resistant Plutella xylostella L. (Lepidoptera: Plutellidae) larvae as hosts, we evaluated the potential impact of Cry1Ac-expressing Bt broccoli on several fitness parameters of H. bacteriophora. Virulence, reproductive potential, time of emergence, and preference of H. bacteriophora for the host (P. xylostella) were not significantly affected when Cry1Ac-resistant P. xylostella larvae were reared on leaves of Cry1Ac or non-Bt broccoli. Also the aforementioned parameters of the subsequent generation of H. bacteriophora did not differ between nematodes obtained from P. xylostella reared on Cry1Ac broccoli compared with those obtained from P. xylostella reared on non-Bt broccoli. To the best of our knowledge, the current study provides the first clear evidence that Cry1Ac does not affect important fitness parameters of H. bacteriophor

    Using field-evolved resistance to Cry1F maize in a lepidopteran pest to demonstrate no adverse effects of Cry1F on one of its major predators

    Get PDF
    Spodoptera frugiperda (JE Smith) represents the first documented case of field-evolved resistance to a genetically engineered crop expressing an insecticidal protein from Bacillus thuringiensis (Bt). In this case it was Cry1F-expressing maize (Mycogen 2A517). The ladybird beetle, Coleomegilla maculata, is a common and abundant predator that suppresses pest populations in maize and many other cropping systems. Its larvae and adults are polyphagous, feeding on aphids, thrips, lepidopteran eggs and larvae, as well as plant tissues. Thus, C. maculata may be exposed to Bt proteins expressed in genetically engineered crops by several pathways. Using Cry1F-resistant S. frugiperda larvae as prey, we evaluated the potential impact of Cry1F-expressing maize on several fitness parameters of C. maculata over two generations. Using Cry1F resistant prey removed any potential prey-mediated effects. Duration of larval and pupal stages, adult weight and female fecundity of C. maculata were not different when they were fed resistant S. frugiperda larvae reared on either Bt or control maize leaves during both generations. ELISA and insect-sensitive bioassays showed C. maculata were exposed to bioactive Cry1F protein. The insecticidal protein had no effect on C. maculata larvae, even though larvae contained 20–32 ng of Cry1F/g by fresh weight. Over all, our results demonstrated that the Cry1F protein did not affect important fitness parameters of one of S. frugiperda’s major predators and that Cry1F protein did not accumulate but was strongly diluted when transferred during trophic interactions

    Eliminating host-mediated effects demonstrates Bt maize producing Cry1F has no adverse effects on the parasitoid Cotesia marginiventris

    Get PDF
    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is an important pest of maize in the United States and many tropical areas in the western hemisphere. In 2001, Herculex I® (Cry1F) maize was commercially planted in the United States to control Lepidoptera, including S. frugiperda. In 2006, a population of S. frugiperda was discovered in Puerto Rico that had evolved resistance to Cry1F maize in the field, making it the first well-documented case of an insect with field resistance to a plant producing protein from Bacillus thuringiensis (Bt). Using this resistant population, we conducted tri-trophic studies with a natural enemy of S. frugiperda. By using resistantS. frugiperda, we were able to overcome possible prey-mediated effects and avoid concerns about potential differences in laboratory- or field-derived Bt resistance. We used the Cry1F-resistant S. frugiperda to evaluate effects of Cry1F on Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae), a larval endoparasitoid of S. frugiperda, over five generations. Our results clearly demonstrate that Cry1F maize does not affect development, parasitism, survivorship, sex ratio, longevity or fecundity of C. marginiventris when they parasitize Cry1F maize-fed S. frugiperda.Furthermore, the level of Cry1F protein in the leaves was strongly diluted when transferred from Bt maize to S. frugiperda and was not detected in larvae, cocoons or adults of C. marginiventris. Our results refute previous reports of C. marginiventris being harmed by Bt proteins and suggest that such results were caused by prey-mediated effects due to using Bt-susceptible lepidopteran hosts

    Using Resistant Prey Demonstrates That Bt Plants Producing Cry1Ac, Cry2Ab, and Cry1F Have No Negative Effects on Geocoris punctipes and Orius insidiosus

    Get PDF
    Geocoris punctipes (Say) and Orius insidiosus (Say) are generalist predators found in a wide range of crops, including cotton (Gossypium hirsutum L. ) and maize (Zea mays L. ), where they provide important biological control services by feeding on an array of pests, including eggs and small larvae of caterpillars. A high percentage of cotton and maize in the United States and several other countries are transgenic cultivars that produce one or more of the insecticidal Cry proteins ofBacillus thuringiensis Berliner (Bt). Here we quantify effects of three Cry proteins on the life history of these predators over two generations when they are exposed to these Cry proteins indirectly through their prey. To eliminate the confounding prey quality effects that can be introduced by Bt-susceptible prey, we used Cry1Ac/Cry2Ab-resistant Trichoplusia ni (Hübner) and Cry1 F-resistantSpodoptera frugiperda (J.E. Smith) in a series of tri-trophic studies. Survival, development, adult mass, fecundity, and fertility were similar when predators consumed larvae feeding on Cry1Ac/Cry2Ab cotton or Cry1 F maize compared with prey feeding on isogenic or near-isogenic cotton or maize. Repeated exposur of the same initial cohort over a second generation also resulted in no differences in life-history traits when feeding on non-Bt- or Bt-fed prey. Enzyme-linked immunosorbent assay showed that predators were exposed to Bt Cry proteins from their prey and that these proteins became increasingly diluted as they moved up the food chain. Results show a clear lack of effect of three common and widespread Cry proteins on these two important predator species. The use of resistant insects to eliminate prey quality effects provides a robust and meaningful assessment of exposure and hazard

    Using Resistant Prey Demonstrates That Bt Plants Producing Cry1Ac, Cry2Ab, and Cry1F Have No Negative Effects on Geocoris punctipes and Orius insidiosus

    Get PDF
    Geocoris punctipes (Say) and Orius insidiosus (Say) are generalist predators found in a wide range of crops, including cotton (Gossypium hirsutum L.) and maize (Zea mays L.), where they provide important biological control services by feeding on an array of pests, including eggs and small larvae of caterpillars. A high percentage of cotton and maize in the United States and several other countries are transgenic cultivars that produce one or more of the insecticidal Cry proteins of Bacillus thuringiensis Berliner (Bt). Here we quantify effects of three Cry proteins on the life history of these predators over two generations when they are exposed to these Cry proteins indirectly through their prey. To eliminate the confounding prey quality effects that can be introduced by Bt-susceptible prey, we used Cry1Ac/Cry2Ab-resistant Trichoplusia ni (Hübner) and Cry1 F-resistant Spodoptera frugiperda (J.E. Smith) in a series of tri-trophic studies. Survival, development, adult mass, fecundity, and fertility were similar when predators consumed larvae feeding on Cry1Ac/Cry2Ab cotton or Cry1 F maize compared with prey feeding on isogenic or near-isogenic cotton or maize. Repeated exposure of the same initial cohort over a second generation also resulted in no differences in life-history traits when feeding on non-Bt- or Bt-fed prey. Enzyme-linked immunosorbent assay showed that predators were exposed to Bt Cry proteins from their prey and that these proteins became increasingly diluted as they moved up the food chain. Results show a clear lack of effect of three common and widespread Cry proteins on these two important predator species. The use of resistant insects to eliminate prey quality effects provides a robust and meaningful assessment of exposure and hazar

    The interaction of two-spotted spider mites, Tetranychus urticae Koch, with Cry protein production and predation by Amblyseius andersoni (Chant) in Cry1Ac/Cry2Ab cotton and Cry1F maize

    Get PDF
    Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis(Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control services, are required to be addressed in an environmental risk assessment. Amblyseius andersoni (Acari: Phytoseiidae) is a cosmopolitan predator of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), a significant pest of cotton and maize. Tri-trophic studies were conducted to assess the potential effects of Cry1Ac/Cry2Ab cotton and Cry1F maize on life history parameters (survival rate, development time, fecundity and egg hatching rate) of A. andersoni. We confirmed that these Bt crops have no effects on the biology of T. urticae and, in turn, that there were no differences in any of the life history parameters of A. andersoni when it fed on T. urticae feeding on Cry1Ac/Cry2Ab or non-Bt cotton and Cry1F or non-Bt maize. Use of a susceptible insect assay demonstrated that T. urticae contained biologically active Cry proteins. Cry proteins concentrations declined greatly as they moved from plants to herbivores to predators and protein concentration did not appear to be related to mite density. Free-choice experiments revealed that A. andersoni had no preference for Cry1Ac/Cry2Ab cotton or Cry1F maize-reared T. urticae compared with those reared on non-Bt cotton or maize. Collectively these results provide strong evidence that these crops can complement other integrated pest management tactics including biological control

    Bt Crops Producing Cry1Ac, Cry2Ab and Cry1F Do Not Harm the Green Lacewing, Chrysoperla rufilabris

    Get PDF
    The biological control function provided by natural enemies is regarded as a protection goal that should not be harmed by the application of any new pest management tool. Plants producing Cry proteins from the bacterium, Bacillus thuringiensis (Bt), have become a major tactic for controlling pest Lepidoptera on cotton and maize and risk assessment studies are needed to ensure they do not harm important natural enemies. However, using Cry protein susceptible hosts as prey often compromises such studies. To avoid this problem we utilized pest Lepidoptera, cabbage looper (Trichoplusia ni) and fall armyworm (Spodoptera frugiperda), that were resistant to Cry1Ac produced in Bt broccoli (T. ni), Cry1Ac/Cry2Ab produced in Bt cotton (T. ni), and Cry1F produced in Bt maize (S. frugiperda). Larvae of these species were fed Bt plants or non-Bt plants and then exposed to predaceous larvae of the green lacewingChrysoperla rufilabris. Fitness parameters (larval survival, development time, fecundity and egg hatch) of C. rufilabris were assessed over two generations. There were no differences in any of the fitness parameters regardless if C. rufilabris consumed prey (T. ni or S. frugiperda) that had consumed Bt or non-Bt plants. Additional studies confirmed that the prey contained bioactive Cry proteins when they were consumed by the predator. These studies confirm that Cry1Ac, Cry2Ab and Cry1F do not pose a hazard to the important predator C. rufilabris. This study also demonstrates the power of using resistant hosts when assessing the risk of genetically modified plants on non-target organisms

    Eliminating host-mediated effects demonstrates Bt maize producing Cry1F has no adverse effects on the parasitoid Cotesia marginiventris

    Get PDF
    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is an important pest of maize in the United States and many tropical areas in the western hemisphere. In 2001, Herculex I® (Cry1F) maize was commercially planted in the United States to control Lepidoptera, including S. frugiperda. In 2006, a population of S. frugiperda was discovered in Puerto Rico that had evolved resistance to Cry1F maize in the field, making it the first well-documented case of an insect with field resistance to a plant producing protein from Bacillus thuringiensis (Bt). Using this resistant population, we conducted tri-trophic studies with a natural enemy of S. frugiperda. By using resistant S. frugiperda, we were able to overcome possible prey-mediated effects and avoid concerns about potential differences in laboratory- or field-derived Bt resistance. We used the Cry1F-resistant S. frugiperda to evaluate effects of Cry1F on Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae), a larval endoparasitoid of S. frugiperda, over five generations. Our results clearly demonstrate that Cry1F maize does not affect development, parasitism, survivorship, sex ratio, longevity or fecundity of C. marginiventris when they parasitize Cry1F maize-fed S. frugiperda. Furthermore, the level of Cry1F protein in the leaves was strongly diluted when transferred from Bt maize to S. frugiperda and was not detected in larvae, cocoons or adults of C. marginiventris. Our results refute previous reports of C. marginiventris being harmed by Bt proteins and suggest that such results were caused by prey-mediated effects due to using Bt-susceptible lepidopteran hosts
    corecore