1,415 research outputs found

    Temperature-dependent evolutions of excitonic superfluid plasma frequency in a srong excitonic insulator candidate, Ta2_2NiSe5_5

    Get PDF
    We investigate an interesting anisotropic van der Waals material, Ta2_{2}NiSe5_{5}, using optical spectroscopy. Ta2_{2}NiSe5_{5} has been known as one of the few excitonic insulators proposed over 50 years ago. Ta2_{2}NiSe5_{5} has quasi-one dimensional chains along the aa-axis. We have obtained anisotropic optical properties of a single crystal Ta2_{2}NiSe5_{5} along the aa- and cc-axes. The measured aa- and cc-axis optical conductivities exhibit large anisotropic electronic and phononic properties. With regard to the aa-axis optical conductivity, a sharp peak near 3050 cm1^{-1} at 9 K, with a well-defined optical gap (ΔEI\Delta^{EI} \simeq 1800 cm1^{-1}) and a strong temperature-dependence, is observed. With an increase in temperature, this peak broadens and the optical energy gap closes around \sim325 K(TcEIT_c^{EI}). The spectral weight redistribution with respect to the frequency and temperature indicates that the normalized optical energy gap (ΔEI(T)/ΔEI(0)\Delta^{EI}(T)/\Delta^{EI}(0)) is 1(T/TcEI)21-(T/T_c^{EI})^2. The temperature-dependent superfluid plasma frequency of the excitonic condensation in Ta2_{2}NiSe5_{5} has been determined from measured optical data. Our findings may be useful for future research on excitonic insulators.Comment: 17 pages, 5 figure

    SOLiDzipper: A High Speed Encoding Method for the Next-Generation Sequencing Data

    Get PDF
    Background Next-generation sequencing (NGS) methods pose computational challenges of handling large volumes of data. Although cloud computing offers a potential solution to these challenges, transferring a large data set across the internet is the biggest obstacle, which may be overcome by efficient encoding methods. When encoding is used to facilitate data transfer to the cloud, the time factor is equally as important as the encoding efficiency. Moreover, to take advantage of parallel processing in cloud computing, a parallel technique to decode and split compressed data in the cloud is essential. Hence in this review, we present SOLiDzipper, a new encoding method for NGS data. Methods The basic strategy of SOLiDzipper is to divide and encode. NGS data files contain both the sequence and non-sequence information whose encoding efficiencies are different. In SOLiDzipper, encoded data are stored in binary data block that does not contain the characteristic information of a specific sequence platform, which means that data can be decoded according to a desired platform even in cases of Illumina, Solexa or Roche 454 data. Results The main calculation time using Crossbow was 173 minutes when 40 EC2 nodes were involved. In that case, an analysis preparation time of 464 minutes is required to encode data in the latest DNA compression method like G-SQZ and transmit it on a 183 Mbit/s bandwidth. However, it takes 194 minutes to encode and transmit data with SOLiDzipper under the same bandwidth conditions. These results indicate that the entire processing time can be reduced according to the encoding methods used, under the same network bandwidth conditions. Considering the limited network bandwidth, high-speed, high-efficiency encoding methods such as SOLiDzipper can make a significant contribution to higher productivity in labs seeking to take advantage of the cloud as an alternative to local computing. Availability http://szipper.dinfree.com . Academic/non-profit: Binary available for direct download at no cost. For-profit: Submit request for for-profit license from the web-site

    Increasing the Durability of Piezoelectric Impact-based Micro Wind Generator in Real Application

    Get PDF
    AbstractThe purpose of this study is to increase the durability of piezoelectric impact-based micro wind generator (PIMWG) in real application. Using new PIMWG design, numerical simulation, and experimental comparison analysis, we improved the durability of PIMWGs in real application. The experimental results show that the optimized PIMWG generated 2.4 mW (RMS value), and it did not crack within 40h. In this study, we improved the durability of PIMWGs for real application

    Adaptive laboratory evolution of a genome-reduced Escherichia coli.

    Get PDF
    Synthetic biology aims to design and construct bacterial genomes harboring the minimum number of genes required for self-replicable life. However, the genome-reduced bacteria often show impaired growth under laboratory conditions that cannot be understood based on the removed genes. The unexpected phenotypes highlight our limited understanding of bacterial genomes. Here, we deploy adaptive laboratory evolution (ALE) to re-optimize growth performance of a genome-reduced strain. The basis for suboptimal growth is the imbalanced metabolism that is rewired during ALE. The metabolic rewiring is globally orchestrated by mutations in rpoD altering promoter binding of RNA polymerase. Lastly, the evolved strain has no translational buffering capacity, enabling effective translation of abundant mRNAs. Multi-omic analysis of the evolved strain reveals transcriptome- and translatome-wide remodeling that orchestrate metabolism and growth. These results reveal that failure of prediction may not be associated with understanding individual genes, but rather from insufficient understanding of the strain's systems biology

    Antidiabetic Effect of Fresh Nopal ( Opuntia ficus-indica

    Get PDF
    The objective of the present study was to evaluate α-glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC50 values of 67.33 and 86.68 μg/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μg/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model (P<0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower (P<0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement

    Sustainable and recyclable super engineering thermoplastic from biorenewable monomer

    Get PDF
    Environmental and health concerns force the search for sustainable super engineering plastics (SEPs) that utilise bio-derived cyclic monomers, e.g. isosorbide instead of restricted petrochemicals. However, previously reported bio-derived thermosets or thermoplastics rarely offer thermal/mechanical properties, scalability, or recycling that match those of petrochemical SEPs. Here we use a phase transfer catalyst to synthesise an isosorbide-based polymer with a high molecular weight >100 kg mol−1, which is reproducible at a 1-kg-scale production. It is transparent and solvent/melt-processible for recycling, with a glass transition temperature of 212 °C, a tensile strength of 78 MPa, and a thermal expansion coefficient of 23.8 ppm K−1. Such a performance combination has not been reported before for bio-based thermoplastics, petrochemical SEPs, or thermosets. Interestingly, quantum chemical simulations show the alicyclic bicyclic ring structure of isosorbide imposes stronger geometric restraint to polymer chain than the aromatic group of bisphenol-A.11Ysciescopu
    corecore