8,749 research outputs found
Maximum A Posteriori Inference in Sum-Product Networks
Sum-product networks (SPNs) are a class of probabilistic graphical models
that allow tractable marginal inference. However, the maximum a posteriori
(MAP) inference in SPNs is NP-hard. We investigate MAP inference in SPNs from
both theoretical and algorithmic perspectives. For the theoretical part, we
reduce general MAP inference to its special case without evidence and hidden
variables; we also show that it is NP-hard to approximate the MAP problem to
for fixed , where is the input size.
For the algorithmic part, we first present an exact MAP solver that runs
reasonably fast and could handle SPNs with up to 1k variables and 150k arcs in
our experiments. We then present a new approximate MAP solver with a good
balance between speed and accuracy, and our comprehensive experiments on
real-world datasets show that it has better overall performance than existing
approximate solvers
Artificial Noise-Aided Biobjective Transmitter Optimization for Service Integration in Multi-User MIMO Gaussian Broadcast Channel
This paper considers an artificial noise (AN)-aided transmit design for
multi-user MIMO systems with integrated services. Specifically, two sorts of
service messages are combined and served simultaneously: one multicast message
intended for all receivers and one confidential message intended for only one
receiver and required to be perfectly secure from other unauthorized receivers.
Our interest lies in the joint design of input covariances of the multicast
message, confidential message and artificial noise (AN), such that the
achievable secrecy rate and multicast rate are simultaneously maximized. This
problem is identified as a secrecy rate region maximization (SRRM) problem in
the context of physical-layer service integration. Since this bi-objective
optimization problem is inherently complex to solve, we put forward two
different scalarization methods to convert it into a scalar optimization
problem. First, we propose to prefix the multicast rate as a constant, and
accordingly, the primal biobjective problem is converted into a secrecy rate
maximization (SRM) problem with quality of multicast service (QoMS) constraint.
By varying the constant, we can obtain different Pareto optimal points. The
resulting SRM problem can be iteratively solved via a provably convergent
difference-of-concave (DC) algorithm. In the second method, we aim to maximize
the weighted sum of the secrecy rate and the multicast rate. Through varying
the weighted vector, one can also obtain different Pareto optimal points. We
show that this weighted sum rate maximization (WSRM) problem can be recast into
a primal decomposable form, which is amenable to alternating optimization (AO).
Then we compare these two scalarization methods in terms of their overall
performance and computational complexity via theoretical analysis as well as
numerical simulation, based on which new insights can be drawn.Comment: 14 pages, 5 figure
Physical Layer Service Integration in 5G: Potentials and Challenges
High transmission rate and secure communication have been identified as the
key targets that need to be effectively addressed by fifth generation (5G)
wireless systems. In this context, the concept of physical-layer security
becomes attractive, as it can establish perfect security using only the
characteristics of wireless medium. Nonetheless, to further increase the
spectral efficiency, an emerging concept, termed physical-layer service
integration (PHY-SI), has been recognized as an effective means. Its basic idea
is to combine multiple coexisting services, i.e., multicast/broadcast service
and confidential service, into one integral service for one-time transmission
at the transmitter side. This article first provides a tutorial on typical
PHY-SI models. Furthermore, we propose some state-of-the-art solutions to
improve the overall performance of PHY-SI in certain important communication
scenarios. In particular, we highlight the extension of several concepts
borrowed from conventional single-service communications, such as artificial
noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These
techniques are shown to be effective in the design of reliable and robust
PHY-SI schemes. Finally, several potential research directions are identified
for future work.Comment: 12 pages, 7 figure
- …