4 research outputs found

    Direct Access to Hierarchically Porous Inorganic Oxide Materials with Three-Dimensionally Interconnected Networks

    No full text
    Hierarchically porous oxide materials have immense potential for applications in catalysis, separation, and energy devices, but the synthesis of these materials is hampered by the need to use multiple templates and the associated complicated steps and uncontrollable mixing behavior. Here we report a simple one-pot strategy for the synthesis of inorganic oxide materials with multiscale porosity. The inorganic precursor and block copolymer are coassembled into an ordered mesostructure (microphase separation), while the in situ-polymerized organic precursor forms organic-rich macrodomains (macrophase separation) around which the mesostructure grows. Calcination generates hierarchical meso/macroporous SiO<sub>2</sub> and TiO<sub>2</sub> with three-dimensionally interconnected pore networks. The continuous 3D macrostructures were clearly visualized by nanoscale X-ray computed tomography. The resulting TiO<sub>2</sub> was used as the anode in a lithium ion battery and showed excellent rate capability compared with mesoporous TiO<sub>2</sub>. This work is of particular importance because it (i) expands the base of BCP self-assembly from mesostructures to complex porous structures, (ii) shows that the interplay of micro- and macrophase separation can be fully exploited for the design of hierarchically porous inorganic materials, and therefore (iii) provides strategies for researchers in materials science and polymer science

    Grafting of Polyimide onto Chemically-Functionalized Graphene Nanosheets for Mechanically-Strong Barrier Membranes

    No full text
    A series of polyimide (PI) nanocomposite films with different loadings of aminophenyl functionalized graphene nanosheets (AP-rGO) was fabricated by in situ polymerization. AP-rGO, a multifunctional carbon nanofiller that can induce covalent bonding between graphene nanosheets and the PI matrix, was obtained through the combination of chemical reduction and surface modification. In addition, phenyl functionalized graphene nanosheets (P-rGO) were prepared by phenylhydrazine for reference nanocomposite films. Because of homogeneous dispersion of AP-rGO and the strong interfacial interaction between AP-rGO and the PI matrix, the resulting nanocomposite films that contained AP-rGO exhibited reinforcement effects of mechanical properties and oxygen barrier properties that were even better than those of pure PI and the reference nanocomposite films. In comparison to the tensile strength and tensile modules of pure PI, the composite films that contained AP-rGO with 3 wt % loading were increased by about 106% (262 MPa) and 52% (9.4 GPa), respectively. Furthermore, the oxygen permeabilities of the composites with 5 wt % filler content were significantly decreased, i.e., they were more than 99% less than the oxygen permeability of pure PI

    Additional file 1: Table S1. of Prognostic impact of a new score using neutrophil-to-lymphocyte ratios in the serum and malignant pleural effusion in lung cancer patients

    No full text
    Multivariate analyses of the factors that are predictive of overall survival in all patients apart from the new score, which use the neutrophil-to-lymphocyte ratios in the serum and malignant pleural effusion. (DOCX 16.8 kb

    Biofunctionalized Ceramic with Self-Assembled Networks of Nanochannels

    No full text
    Nature designs circulatory systems with hierarchically organized networks of gradually tapered channels ranging from micrometer to nanometer in diameter. In most hard tissues in biological systems, fluid, gases, nutrients and wastes are constantly exchanged through such networks. Here, we developed a biologically inspired, hierarchically organized structure in ceramic to achieve effective permeation with minimum void region, using fabrication methods that create a long-range, highly interconnected nanochannel system in a ceramic biomaterial. This design of a synthetic model-material was implemented through a novel pressurized sintering process formulated to induce a gradual tapering in channel diameter based on pressure-dependent polymer agglomeration. The resulting system allows long-range, efficient transport of fluid and nutrients into sites and interfaces that conventional fluid conduction cannot reach without external force. We demonstrate the ability of mammalian bone-forming cells placed at the distal transport termination of the nanochannel system to proliferate in a manner dependent solely upon the supply of media by the self-powering nanochannels. This approach mimics the significant contribution that nanochannel transport plays in maintaining living hard tissues by providing nutrient supply that facilitates cell growth and differentiation, and thereby makes the ceramic composite “alive”
    corecore