132 research outputs found

    A New Approach to the Economic System [I]

    Get PDF

    A New Approach to the Economic System [II] : Generalization of Money and Market

    Get PDF

    Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    Get PDF
    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level

    Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality

    Get PDF
    A novel one-step synthetic route, the double in situ approach, is used to produce both TiO2nanoparticles and polymer (PET), and simultaneously forming a nanocomposite with multi-functionality. The method uses the release of water during esterification to hydrolyze titanium (IV) butoxide (Ti(OBu)4) forming nano-TiO2in the polymerization vessel. This new approach is of general significance in the preparation of polymer nanocomposites, and will lead to a new route in the synthesis of multi-functional polymer nanocomposites

    Video Observations of Tiny Near-Earth Objects with Tomo-e Gozen

    Full text link
    We report the results of video observations of tiny (diameter less than 100 m) near-Earth objects (NEOs) with Tomo-e Gozen on the Kiso 105 cm Schmidt telescope. A rotational period of a tiny asteroid reflects its dynamical history and physical properties since smaller objects are sensitive to the YORP effect. We carried out video observations of 60 tiny NEOs at 2 fps from 2018 to 2021 and successfully derived the rotational periods and axial ratios of 32 NEOs including 13 fast rotators with rotational periods less than 60 s. The fastest rotator found during our survey is 2020 HS7 with a rotational period of 2.99 s. We statistically confirmed that there is a certain number of tiny fast rotators in the NEO population, which have been missed with any previous surveys. We have discovered that the distribution of the tiny NEOs in a diameter and rotational period (D-P) diagram is truncated around a period of 10 s. The truncation with a flat-top shape is not explained well either by a realistic tensile strength of NEOs or suppression of YORP by meteoroid impacts. We propose that the dependence of the tangential YORP effect on the rotational period potentially explains the observed pattern in the D-P diagram.Comment: This article is published in PASJ as open access, published by OUP (https://doi.org/10.1093/pasj/psac043). 27 pages, 16 figure
    • …
    corecore